BYT230PIV-1000 BYT231PIV-1000

FAST RECOVERY RECTIFIER DIODES

MAIN PRODUCT CHARACTERISTICS

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 30 \mathrm{~A}$
$\mathrm{~V}_{\text {RRM }}$	1000 V
$\mathrm{~V}_{\mathrm{F}}$ (max)	1.8 V
trr (max)	80 ns

FEATURES AND BENEFITS

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- INSULATED PACKAGE: ISOTOP

Insulation voltage: $2500 \mathrm{~V}_{\text {RMS }}$
Capacitance $=45 \mathrm{pF}$
Inductance < 5 nH

DESCRIPTION

Dual high voltage rectifier devices are suited for free-wheeling function in converters and motor control circuits.

Packaged in ISOTOP, they are intended for use in Switch Mode Power Supplies.

に:OTOP ${ }^{\text {TM }}$
(Plastic)

ABSOLUTE RATINGS (limiting val! $\cdot \mathbf{\prime}$ e, , per diode)

Symbol	Parameter		Value	Unit
VRRM	Repetiti.e utan ieverse voltage		1000	V
Ifrm	Repeitive peak forward current	$\mathrm{tp}=5 \mu \mathrm{~s} \quad \mathrm{~F}=1 \mathrm{kHz}$	700	A
$\mathrm{I}_{\text {F (RMS }}$	Kils forward current		50	A
I:(n!)	Average forward current	$\begin{aligned} & \mathrm{Tc}=55^{\circ} \mathrm{C} \\ & \delta=0.5 \end{aligned}$	30	A
$\mathrm{I}_{\text {FSM }}$	Surge non repetitive forward current	tp $=10 \mathrm{~ms}$ Sinusoidal	200	A
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-40 to +150	${ }^{\circ} \mathrm{C}$
Tj	Maximum operating junction temperature		150	${ }^{\circ} \mathrm{C}$

TM: ISOTOP is a registered trademark of STMicroelectronics.

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
$\mathrm{R}_{\text {th(j-c) }}$	Junction to case	Per diode	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Total	0.8	
$\mathrm{R}_{\text {th(c) }}$		Coupling	0.1	

When the diodes 1 and 2 are used simultaneously:
$\Delta \mathrm{Tj}($ diode 1$)=\mathrm{P}($ diode $) \times R_{\text {th(j-c) }}($ Per diode $)+\mathrm{P}($ diode 2$) \times R_{\text {th }}(\mathrm{c})$
STATIC ELECTRICAL CHARACTERISTICS (per diode)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
V_{F} *	Forward voltage drop	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{IF}_{\mathrm{F}}=30 \mathrm{~A}$			1.9	V
		$\mathrm{Tj}=100^{\circ} \mathrm{C}$				1.8	
$\mathrm{IR}^{* *}$	Reverse leakage current	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{RRM}}$			100	$\mu \mathrm{A}$
		$\mathrm{Tj}=100^{\circ} \mathrm{C}$				5	mA

Pulse test: *tp $=380 \mu \mathrm{~s}, \delta<2 \%$
** tp $=5 \mathrm{~ms}, \delta<2 \%$
To evaluate the conduction losses use the following equation:
$\mathrm{P}=1.47 \times \mathrm{I}_{\mathrm{F}(\mathrm{AV})}+0.010 \mathrm{I}_{\mathrm{F}}{ }^{2}{ }_{(\mathrm{RMS})}$

RECOVERY CHARACTERISTICS (per diode)

Symbol	Test Conditions		Min.	Typ.	Max.	Unit
$t_{\text {rr }}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \quad \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s}$			165	ns
		$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} \quad \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \quad \mathrm{I}_{\mathrm{rr}}=0.25 \mathrm{~A}$			80	

TURN-OFF SWITCHING CHARACTERISTICS (per diode)

Symbol	Parameter	Test C	ons	Min.	Typ.	Max.	Unit
tirm	Maximum reverse recovery time	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$	$\begin{aligned} & V_{C C}=200 \mathrm{~V} \\ & \mathrm{I}_{F}=30 \mathrm{~A} \\ & \mathrm{~L}_{p} \leq 0.05 \mu \mathrm{H} \\ & \mathrm{Tj}=100^{\circ} \mathrm{C} \\ & \text { (see fig. 11) } \\ & \hline \end{aligned}$			200	ns
		$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$			120		
IRM	Maximum reverse recovery current	$\mathrm{dl}_{\mathrm{F} / \mathrm{dt}}=-120 \mathrm{~A} / \mu \mathrm{s}$				19.5	A
		$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$			22		
$\mathrm{C}=\frac{\mathrm{V}_{\mathrm{RP}}}{\mathrm{V}_{\mathrm{CC}}}$	Turn-off overvoltage coefficient	$\begin{aligned} & \hline \mathrm{Tj}_{\mathrm{j}}=100^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{CC}}=200 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \\ & \mathrm{dl} / \mathrm{dt}=-30 \mathrm{~A} / \mu \mathrm{s} \quad \mathrm{~L}_{p}=5 \mu \mathrm{H} \\ & \text { (see fig. 12) } \end{aligned}$				4.5	/

Fig. 1: Low frequency power losses versus average current.

Fig. 3: Non repetitive peak surge current versus overload duration.

Fig. 5: Voltage drop versus forward current.

Fig. 2: Peak current versus form factor.

Fig. 4: Relative variation of thermal impedance junction to case versus pulse duration.

Fig. 6: Recovery charge versus dif/dt.

Fig. 7: Recovery time versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 9: Peak forward voltage versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 11: Turn-off switching characteristics (without serie inductance).

Fig. 8: Peak reverse current versus dlf/dt.

Fig. 10: Dynamic parameters versus junction temperature.

Fig. 12: Turn-off switching characteristics (with serie inductance).

PACKAGE MECHANICAL DATA

ISOTOP

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
BYT230PIV-1000	BYT230PIV-1000	ISOTOP	28 g. (without screws)	10	Tube
BYT231PIV-1000	BYT231PIV-1000	ISOTOP	28 g. (without screws)	10	Tube

- Cooling method: by conduction (C)
- Recommended torque value : 1.3 N.m (MAX $1.5 \mathrm{~N} . \mathrm{m})$ for the $6 \times \mathrm{M} 4$ screws. ($2 \times \mathrm{M} 4$ screws recommended for mounting the package on the heatsink and the 4 screws given with the screw version). The screws supplied with the package are adapted for mounting on a board (or other types of terminals) with a thickness of 0.6 mm min and 2.2 mm max.
- Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

