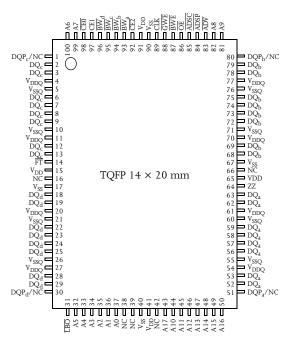

3.3V 256K × 32/36 pipeline burst synchronous SRAM

Features

- Organization: 262,144 words × 32 or 36 bits
- Fast clock speeds to 166 MHz in LVTTL/LVCMOS
- Fast clock to data access: 3.5/3.8/4.0/5.0 ns
- Fast \overline{OE} access time: 3.5/3.8/4.0/5.0 ns
- Fully synchronous register-to-register operation
- Single register "Flow-through" option
- Dual-cycle deselect
 - Single-cycle deselect also available (AS7C33256PFS32A/AS7C33256PFS36A)
- Available in both 2 chip enable and 3 chip enable
 - 2 CE part number is AS7C33256PFD32A2 or AS7C33256PFD36A2
- Pentium^{®1} compatible architecture and timing

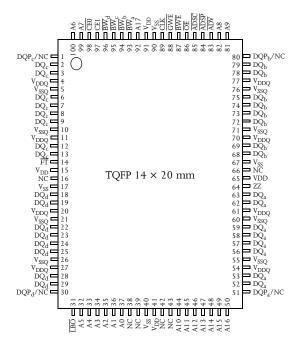
- Asynchronous output enable control
- Available in 100-pin TQFP and 119-pin BGA packages
- Byte write enables
- 3.3V core power supply
- 2.5V or 3.3V I/O operation with separate V_{DDO}
- 30 mW typical standby power in power down mode
- NTD^{TM1} pipeline architecture available (AS7C33256NTD32A/ AS7C33256NTD36A)
- 1 *Pentium[®] is a registered trademark of Intel Corporation. NTD™ is a trademark of Alliance Semiconductor Corporation. All trademarks mentioned in this document are the property of their respective owners

Logic block diagram



Selection guide

	-166	-150	-133	-100	Units
Minimum cycle time	6	6.6	7.5	10	ns
Maximum pipelined clock frequency	166	150	133	100	MHz
Maximum pipelined clock access time	3.5	3.8	4	5	ns
Maximum operating current	475	450	425	325	mA
Maximum standby current	130	110	100	90	mA
Maximum CMOS standby current (DC)	30	30	30	30	mA



Pin Arrangment for TQFP 3 Chip Enable

Note: Pins 1, 30, 51, 80 are NC for \times 32

Pin Arrangment for TQFP 2 Chip Enable

Note: Pins 1, 30, 51, 80 are NC for \times 32

Ball assignment for 119-ball BGA¹

	1	2	3	4	5	6	7
A	V_{DDQ}	A	A	ADSP	A	A	V_{DDQ}
В	NC	CE1	A	ADSC	A	A	NC
C	NC	A	A	V_{DD}	A	A	NC
D	DQ_C	DQPc	V_{SS}	NC	V_{SS}	DQpb	DQb
E	DQ_C	DQc	V _{SS}	CE0	V _{SS}	DQb	DQb
F	V_{DDQ}	DQc	V_{SS}	ŌĒ	V_{SS}	DQb	V_{DDQ}
G	DQ_C	DQc	BWc	ADV	BWb	DQb	DQb
H	DQ_C	DQc	V _{SS}	GWE	V _{SS}	DQb	DQb
J	V_{DDQ}	V_{DD}	NC	V_{DD}	NC	V_{DD}	V_{DDQ}
K	DQd	DQd	V_{SS}	CLK	V_{SS}	DQa	DQa
L	DQd	DQd	BWd	NC	BWa	DQa	DQa
M	V_{DDQ}	DQd	V_{SS}	BWE	V_{SS}	DQa	V_{DDQ}
N	DQd	DQd	V_{SS}	$A1^2$	V_{SS}	DQa	DQa
P	DQd	DQPd	V _{SS}	$A0^2$	V _{SS}	DQPa	DQa
R	NC	A	LBO	V_{DD}	FT	A	NC
T	NC	NC	A	A	A	NC	ZZ
U	V_{DDQ}	NC	NC	NC	NC	NC	V_{DDQ}

¹ Note 2D, 2P, 6D and 6P are NC for x32 2 A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter

Functional description

The AS7C33256PFD32A and 7C33256PFD36A are high-performance CMOS 8-Mbit synchronous Static Random Access Memory (SRAM) devices organized as 262,144 words × 32 or 36 bits, and incorporate a two-stage register-register pipeline for highest frequency on any given technology.

Timing for these devices is compatible with existing Pentium[®] synchronous cache specifications. This architecture is suited for ASIC, DSP (TMS320C6X), and PowerPC^{TM1}-based systems in computing, datacomm, instrumentation, and telecommunications systems.

Fast cycle times of 6/6.6/7.5/10 ns with clock access times (t_{CD}) of 3.5/3.8/4.0/5.0 ns enable 166, 150, 133 and 100 MHz bus frequencies. Two-chip enable and three-chip enable ($\overline{\text{CE}}$) inputs permit easy memory expansion. Burst operation is initiated in one of two ways: the controller address strobe ($\overline{\text{ADSC}}$), or the processor address strobe ($\overline{\text{ADSP}}$). The burst advance pin ($\overline{\text{ADV}}$) allows subsequent internally generated burst addresses.

Read cycles are initiated with \overline{ADSP} (regardless of \overline{WE} and \overline{ADSC}) using the new external address clocked into the on-chip address register when \overline{ADSP} is sampled Low, the chip enables are sampled active, and the output buffer is enabled with \overline{OE} . In a read operation the data accessed by the current address, registered in the address registers by the positive edge of CLK, are carried to the data-out registers and driven on the output pins on the next positive edge of CLK. \overline{ADV} is ignored on the clock edge that samples \overline{ADSP} asserted, but is sampled on all subsequent clock edges. Address is incremented internally for the next access of the burst when \overline{ADV} is sampled Low, and both address strobes are High. Burst mode is selectable with the \overline{LBO} input. With \overline{LBO} unconnected or driven High, burst operations use a Pentium count sequence. With \overline{LBO} driven LOW, the device uses a linear count sequence suitable for PowerPC and many other applications.

Write cycles are performed by disabling the output buffers with \overline{OE} and asserting a write command. A global write enable \overline{GWE} writes all 32/36 bits regardless of the state of individual $\overline{BW[a:d]}$ inputs. Alternately, when \overline{GWE} is High, one or more bytes may be written by asserting \overline{BWE} and the appropriate individual byte \overline{BWn} signal(s).

 \overline{BWn} is ignored on the clock edge that samples \overline{ADSP} Low, but is sampled on all subsequent clock edges. Output buffers are disabled when \overline{BWn} is sampled LOW (regardless of \overline{OE}). Data is clocked into the data input register when \overline{BWn} is sampled Low. Address is incremented internally to the next burst address if \overline{BWn} and \overline{ADV} are sampled Low.

Read or write cycles may also be initiated with ADSC instead of ADSP. The differences between cycles initiated with ADSC and ADSP follow.

- \overline{ADSP} must be sampled HIGH when \overline{ADSC} is sampled LOW to initiate a cycle with \overline{ADSC} .
- WE signals are sampled on the clock edge that samples ADSC LOW (and ADSP High).
- Master chip enable CEO blocks ADSP, but not ADSC.

AS7C33256PFD32A and AS7C33256PFD36A family operates from a core 3.3V power supply. I/Os use a separate power supply that can operate at 2.5V or 3.3V. These devices are available in 100-pin 14×20 mm TQFP package and 119-pin 14×20 mm BGA package.

Capacitance

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	C_{IN}	Address and control pins	$V_{IN} = 0V$	5	pF
I/O capacitance	C _{I/O}	I/O pins	$V_{IN} = V_{OUT} = 0V$	7	pF

Write enable truth table (per byte)

GWE	BWE	BWn	WEn
L	X	X	Т
Н	L	L	Т
Н	Н	X	F*
Н	L	Н	F [*]

 $\textbf{Key:} \ X = Don't \ Care, \ L = Low, \ H = High, \ T = True, \ F = False; \ *= Valid \ read; \ n = a, \ b, \ c, \ d; \ \overline{WE}, \ \overline{WEn} = internal \ write \ signal.$

Burst order table

	Inter	leaved	Burst (Order		Lir	iear Bu	rst Or	der
		LBC	5 =1			<u>IBO</u> =0			
Starting Address	00	00 01 10 11			Starting Address	00	01	10	11
First increment	01	00	11	10	First increment	01	10	11	00
Second increment	10	11	00	01	Second increment	10	11	00	01
Third increment	11	11 10 01 00			Third increment	11	00	01	10

¹ PowerPCTM is a trademark International Business Machines Corporation.

Signal descriptions

Signal	I/O	Properties	Description
CLK	I	CLOCK	Clock. All inputs except \overline{OE} , \overline{FT} , ZZ, \overline{LBO} are synchronous to this clock.
A0-A17	I	SYNC	Address. Sampled when all chip enables are active and ADSC or ADSP are asserted.
DQ[a,b,c,d]	I/O	SYNC	Data. Driven as output when the chip is enabled and $\overline{\text{OE}}$ is active.
CEO	Ι	SYNC	Master chip enable. Sampled on clock edges when \overline{ADSP} or \overline{ADSC} is active. When $\overline{CE0}$ is inactive, \overline{ADSP} is blocked. Refer to the Synchronous Truth Table for more information.
CE1, CE2	Ι	SYNC	Synchronous chip enables. Active HIGH and active Low, respectively. Sampled on clock edges when $\overline{\text{ADSC}}$ is active or when $\overline{\text{CEO}}$ and $\overline{\text{ADSP}}$ are active.
ADSP	Ι	SYNC	Address strobe processor. Asserted LOW to load a new bus address or to enter standby mode.
ADSC	I	SYNC	Address strobe controller. Asserted LOW to load a new address or to enter standby mode.
ADV	I	SYNC	Advance. Asserted LOW to continue burst read/write.
GWE	Ι	SYNC	Global write enable. Asserted LOW to write all 32/36 bits. When High, \overline{BWE} and $\overline{BW[a:d]}$ control write enable.
BWE	I	SYNC	Byte write enable. Asserted LOW with $\overline{\text{GWE}} = \text{HIGH}$ to enable effect of $\overline{\text{BW[a:d]}}$ inputs.
BW[a,b,c,d]	Ι	SYNC	Write enables. Used to control write of individual bytes when $\overline{GWE} = HIGH$ and $\overline{BWE} = Low$. If any of $\overline{BW[a:d]}$ is active with $\overline{GWE} = HIGH$ and $\overline{BWE} = LOW$ the cycle is a write cycle. If all $\overline{BW[a:d]}$ are inactive the cycle is a read cycle.
ŌĒ	I	ASYNC	Asynchronous output enable. I/O pins are driven when $\overline{\text{OE}}$ is active and the chip is in read mode.
<u>I.BO</u>	I	STATIC	Count mode. When driven High, count sequence follows Intel XOR convention. When driven Low, count sequence follows linear convention. This signal is internally pulled High.
FT	Ι	STATIC	Flow-through mode. When low, enables single register flow-through mode. Connect to $V_{\rm DD}$ if unused or for pipelined operation.
ZZ	I	ASYNC	Snooze. Places device in low power mode; data is retained. Connect to GND if unused.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit
Power supply voltage relative to GND	V _{DD} , V _{DDQ}	-0.5	+4.6	V
Input voltage relative to GND (input pins)	V _{IN}	-0.5	$V_{DD} + 0.5$	V
Input voltage relative to GND (I/O pins)	V _{IN}	-0.5	$V_{\rm DDQ} + 0.5$	V
Power dissipation	P_{D}	_	1.8	W
DC output current	I _{OUT}	_	50	mA
Storage temperature (plastic)	T _{stg}	-65	+150	°C
Temperature under bias	T _{bias}	-65	+135	°C

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect reliability.

Synchronous truth table

CE0	CE1	CE2	ADSP	ADSC	ADV	WEn ¹	OE	Address accessed	CLK	Operation	DQ
Н	X	X	X	L	X	X	X	NA	L to H	Deselect	Hi–Z
L	L	X	L	X	X	X	X	NA	L to H	Deselect	Hi–Z
L	L	X	Н	L	X	X	X	NA	L to H	Deselect	Hi–Z
L	X	Н	L	X	X	X	X	NA	L to H	Deselect	Hi–Z
L	X	Н	Н	L	X	X	X	NA	L to H	Deselect	Hi–Z
L	Н	L	L	X	X	X	L	External	L to H	Begin read	Hi–Z ²
L	Н	L	L	X	X	X	Н	External	L to H	Begin read	Hi–Z
L	Н	L	Н	L	X	F	L	External	L to H	Begin read	Hi–Z ²
L	Н	L	Н	L	X	F	Н	External	L to H	Begin read	Hi–Z
X	X	X	Н	Н	L	F	L	Next	L to H	Cont. read	Q
X	X	X	Н	Н	L	F	Н	Next	L to H	Cont. read	Hi–Z
X	X	X	Н	Н	Н	F	L	Current	L to H	Suspend read	Q
X	X	X	Н	Н	Н	F	Н	Current	L to H	Suspend read	Hi–Z
Н	X	X	X	Н	L	F	L	Next	L to H	Cont. read	Q
Н	X	X	X	Н	L	F	Н	Next	L to H	Cont. read	Hi–Z
Н	X	X	X	Н	Н	F	L	Current	L to H	Suspend read	Q
Н	X	X	X	Н	Н	F	Н	Current	L to H	Suspend read	Hi–Z
L	Н	L	Н	L	X	T	X	External	L to H	Begin write	D^3
X	X	X	Н	Н	L	T	X	Next	L to H	Cont. write	D
Н	X	X	X	Н	L	T	X	Next	L to H	Cont. write	D
X	X	X	Н	Н	Н	T	X	Current	L to H	Suspend write	D
Н	X	X	X	Н	Н	T	X	Current	L to H	Suspend write	D

 $^{{\}bf 1}$ See "Write enable truth table" on page 4 for more information.

Key: X = Don't Care, L = Low, H = High.

Recommended operating conditions

Parameter		Symbol	Min	Nominal	Max	Unit
Supply voltage		V_{DD}	3.135	3.3	3.465	V
Supply voltage		V_{SS}	0.0	0.0	0.0	, ,
3.3V I/O supply		V_{DDQ}	3.135	3.3	3.465	V
voltage		V_{SSQ}	0.0	0.0	0.0	, ,
2.5V I/O supply		V_{DDQ}	2.35	2.5	2.9	V
voltage		V_{SSQ}	0.0	0.0	0.0	,
	Address and	V_{IH}	2.0	1	$V_{\rm DD} + 0.3$	V
Input voltages ¹	control pins	V_{IL}	-0.5^{2}	1	0.8	,
input voitages	I/O pins	V_{IH}	2.0	1	$V_{DDQ} + 0.3$	V
	17 O pinis	V_{IL}	-0.5^{2}	1	0.8	,
Ambient operating temp	perature	T_{A}	0	_	70	°C

¹ Input voltage ranges apply to 3.3V I/O operation. For 2.5V I/O operation, contact factory for input specifications. 2 $V_{\rm IL}$ min = -2.0V for pulse width less than 0.2 \times $t_{\rm RC}$.

² Q in "flow through" mode

³ For WRITE operation following a READ, $\overline{\text{OE}}$ must be HIGH before the input data set up time and held HIGH throughout the input hold time.

P. 7 of 14

TQFP thermal resistance

Description	Conditions		Symbol	Typical
Thermal resistance	Tark and distance Callery standard tark mostly along	1–layer	$ heta_{ ext{JA}}$	40
(junction to ambient) ¹	Test conditions follow standard test methods and procedures for measuring thermal impedance,	4–layer	$ heta_{ ext{JA}}$	22
Thermal resistance (junction to top of case) ¹	per EIA/JESD51		θ_{JC}	8

¹ This parameter is sampled.

DC electrical characteristics

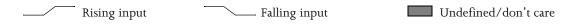
			-1	66	-1	50	-1	33	-1	00		
Parameter	Symbol	Test conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit	
Input leakage current ¹	$ \mathrm{I}_{\mathrm{LI}} $	$V_{\mathrm{DD}} = \mathrm{Max}$, $V_{\mathrm{IN}} = \mathrm{GND}$ to V_{DD}	-	2	-	2	-	2	-	2	μΑ	
Output leakage current	$ I_{LO} $	$\overline{ ext{OE}} \ge ext{V}_{ ext{IH}}, ext{V}_{ ext{DD}} = ext{Max}, \\ ext{V}_{ ext{OUT}} = ext{GND to V}_{ ext{DD}}$	-	2	_	2		2	-	2	μА	
Operating power supply current	I _{CC} ² (Pipelined)	$\overline{\text{CE0}} = \text{V}_{\text{IL}}, \text{CE1} = \text{V}_{\text{IH}}, \overline{\text{CE2}} = \text{V}_{\text{IL}},$ $\text{f} = \text{f}_{\text{Max}}, \text{I}_{\text{OUT}} = \text{0 mA}$	-	475	_	450	1	425	ı	325	mA	
Operating power supply current	I _{CC} ² (Flow-through)	$\overline{\text{CE0}} = \text{V}_{\text{IL}}, \text{CE1} = \text{V}_{\text{IH}}, \overline{\text{CE2}} = \text{V}_{\text{IL}},$ $\text{f} = \text{f}_{\text{Max}}, \text{I}_{\text{OUT}} = \text{0 mA}$	_	325	ı	325	Ι	300	I	300	mA	
	I_{SB}	Deselected, $f = f_{Max}$, $ZZ \le V_{IL}$	_	130	_	110	ı	100	ı	90		
Standby power supply current	I_{SB1}	Deselected, f = 0, ZZ \leq 0.2V all $V_{IN} \leq$ 0.2V or \geq $V_{DD} - 0.2V$	_	30	-	30	-	30	-	30	mA	
зарріу сштен	I_{SB2}	Deselected, $f = f_{Max}$, $ZZ \ge V_{DD} - 0.2V$ All $V_{IN} \le V_{IL}$ or $\ge V_{IH}$	-	30	_	30	1	30	ı	30		
Output voltage	V_{OL}	$I_{OL} = 8 \text{ mA}, V_{DDQ} = 3.465 \text{V}$	_	0.4	_	0.4	_	0.4	_	0.4	v	
Output voitage	V _{OH}	$I_{OH} = -4 \text{ mA}, V_{DDQ} = 3.135 \text{V}$	2.4	_	2.4	_	2.4	_	2.4	_	•	

¹ \overline{LBO} pin has an internal pull-up and input leakage = $\pm 10~\mu A$.

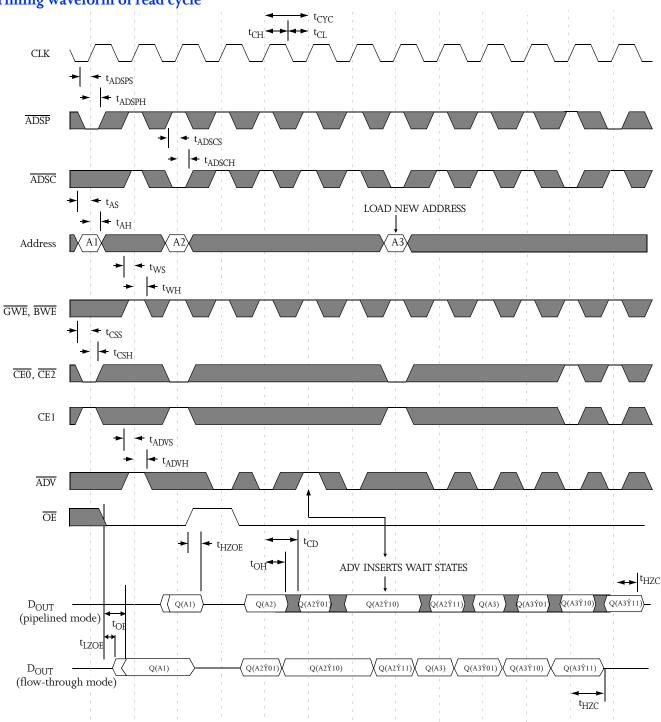
DC electrical characteristics for 2.5V I/O operation

			-166		-150		-133		-100		
Parameter	Symbol	Test conditions	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Output leakage current	I _{LO}	$\overline{\text{OE}} \ge \text{V}_{\text{IH}}, \text{V}_{\text{DD}} = \text{Max}, \\ \text{V}_{\text{OUT}} = \text{GND to V}_{\text{DD}}$	-1	1	-1	1	-1	1	-1	1	μΑ
Output voltage	V_{OL}	$I_{OL} = 2 \text{ mA}, V_{DDQ} = 2.65 V$	-	0.7	_	0.7	-	0.7	_	0.7	V
Output voltage	V _{OH}	$I_{OH} = -2 \text{ mA}, V_{DDQ} = 2.35 \text{V}$	1.7	_	1.7	_	1.7	_	1.7	ı	•

² I_{CC} given with no output loading. I_{CC} increases with faster cycles times and greater output loading.

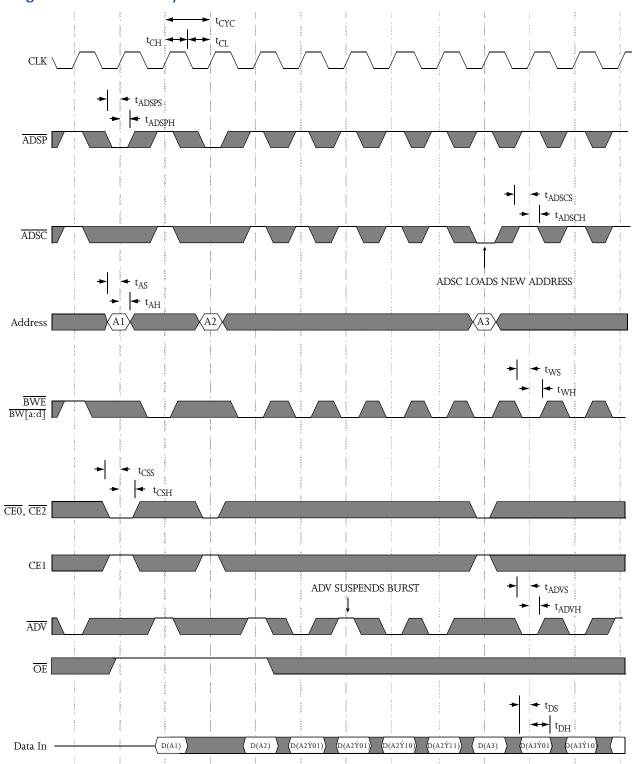

Timing characteristics over operating range

S control of the cont	-166		-150		-133		-100				
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes ¹
Clock frequency	f_{Max}	_	166	_	150	_	133	_	100	MHz	
Cycle time (pipelined mode)	t _{CYC}	6	_	6.6	_	7.5	_	10	_	ns	
Cycle time (flow-through mode)	t _{CYCF}	10	_	10	_	12	_	12	_	ns	
Clock access time (pipelined mode)- 3.3V VDDQ	t _{CD} 3.3V	=	3.5	-	3.8	=	4.0	-	5.0	ns	
Clock access time (pipelined mode)- 2.5V VDDQ	t _{CD} 2.5V	-	4.0	-	4.3	-	4.5	-	5.0	ns	
Clock access time (flow-through mode)	t _{CDF}	_	9	_	10	_	10	_	12	ns	
Output enable LOW to data valid	t _{OE}	_	3.5	_	3.8	_	4.0	_	5.0	ns	
Clock HIGH to output Low Z	t _{LZC}	0	_	0	_	0	_	0	_	ns	2,3,4
Data output invalid from clock HIGH	t _{OH}	1.5	_	1.5	_	1.5	_	1.5	_	ns	2
Output enable LOW to output Low Z	t _{LZOE}	0	_	0	_	0	_	0	_	ns	2,3,4
Output enable HIGH to output High Z	t _{HZOE}	_	3.5	_	3.8	_	4.0	_	4.5	ns	2,3,4
Clock HIGH to output High Z	t _{HZC}	_	3.5	_	3.8	_	4.0	_	5.0	ns	2,3,4
Output enable HIGH to invalid output	t _{OHOE}	0	_	0	_	0	_	0	_	ns	
Clock HIGH pulse width	t _{CH}	2.4	_	2.5	_	2.5	_	3.5	_	ns	5
Clock LOW pulse width	t_{CL}	2.4	_	2.5	_	2.5	_	3.5	_	ns	5
Address setup to clock HIGH	t _{AS}	1.5	_	1.5	_	1.5	_	2.0	_	ns	6
Data setup to clock HIGH	t_{DS}	1.5	_	1.5	_	1.5	_	2.0	_	ns	6
Write setup to clock HIGH	t _{WS}	1.5	_	1.5	_	1.5	_	2.0	_	ns	6,7
Chip select setup to clock HIGH	t _{CSS}	1.5	_	1.5	_	1.5	_	2.0	_	ns	6,8
Address hold from clock HIGH	t _{AH}	0.5	-	0.5	_	0.5	_	0.5	_	ns	6
Data hold from clock HIGH	t _{DH}	0.5	-	0.5	_	0.5	_	0.5	_	ns	6
Write hold from clock HIGH	t _{WH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	6,7
Chip select hold from clock HIGH	t _{CSH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	6,8
ADV setup to clock HIGH	t _{ADVS}	1.5	-	1.5	_	1.5	_	2.0	_	ns	6
ADSP setup to clock HIGH	t _{ADSPS}	1.5	_	1.5	_	1.5	_	2.0	_	ns	6
ADSC setup to clock HIGH	t _{ADSCS}	1.5	_	1.5	_	1.5	_	2.0	_	ns	6
ADV hold from clock HIGH	t _{ADVH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	6
ADSP hold from clock HIGH	t _{ADSPH}	0.5	_	0.5	-	0.5	_	0.5	_	ns	6
ADSC hold from clock HIGH	t _{ADSCH}	0.5	_	0.5	_	0.5	_	0.5	_	ns	6


1 See "notes" on page 12

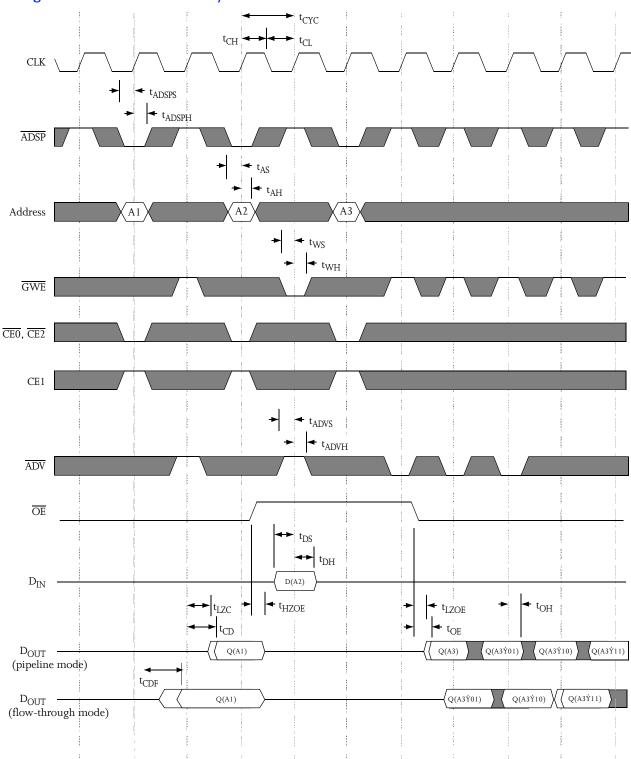
Key to switching waveforms

Timing waveform of read cycle



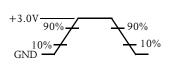
Note: $\acute{Y} = XOR$ when $\overline{LBO} = HIGH/No$ Connect; $\acute{Y} = ADD$ when $\overline{LBO} = LOW$.

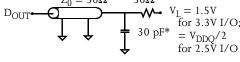
 $\overline{BW[a:d]}$ is don't care.


Timing waveform of write cycle

Note: $\acute{Y} = XOR$ when $\overline{LBO} = HIGH/No$ Connect; $\acute{Y} = ADD$ when $\overline{LBO} = LOW$.

Timing waveform of read/write cycle




Note: $\acute{Y} = XOR$ when $\overline{LBO} = HIGH/No$ Connect; $\acute{Y} = ADD$ when $\overline{LBO} = LOW$.

AC test conditions

- Output load: see Figure B, except for t_{LZC} , t_{LZOE} , t_{HZC} , see Figure C.
- Input pulse level: GND to 3V. See Figure A.
- Input rise and fall time (measured at 0.3V and 2.7V): 2 ns. See Figure A.
- Input and output timing reference levels: 1.5V.

+3.3V for 3.3V I/O;

Thevenin equivalent:

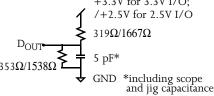
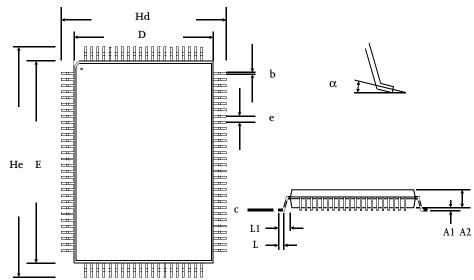


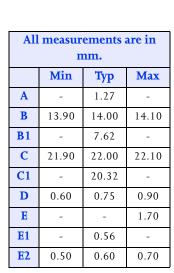
Figure C: Output load(B)

Figure A: Input waveform

Figure B: Output load (A)

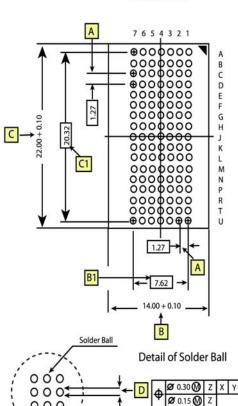
Notes


- For test conditions, see AC Test Conditions, Figures A, B, C.
- This parameter measured with output load condition in Figure C. 2
- This parameter is sampled, but not 100% tested.
- $t_{\mbox{HZOE}}$ is less than $t_{\mbox{LZOE}}$; and $t_{\mbox{HZC}}$ is less than $t_{\mbox{LZC}}$ at any given temperature and voltage.
- tCH measured as HIGH above VIH and tCL measured as LOW below VIL.
- This is a synchronous device. All addresses must meet the specified setup and hold times for all rising edges of CLK. All other synchronous inputs must meet the setup and hold times for all rising edges of CLK when chip is enabled.
- Write refers to GWE, BWE, BW[a:d].
- Chip select refers to $\overline{\text{CE0}}$, $\overline{\text{CE1}}$, $\overline{\text{CE2}}$.


Package Dimensions

100-pin quad flat pack (TQFP)

	TQFP					
	Min	Max				
A 1	0.05	0.15				
A2	1.35	1.45				
b	0.22	0.38				
C	0.09	0.20				
D	13.90	14.10				
E	19.90	20.10				
e	0.65 nominal					
Hd	15.90	16.10				
He	21.90	22.10				
L	0.45	0.75				
L1	1.00 nominal					
α	0°	7°				
Dimensions in millimeters						



119-ball BGA (ball grid array)

Top View

Bottom View

Side View

Ordering information

Packages	-166 MHz	-150 MHz	-133 MHz	-100 MHz
x32 TQFP	AS7C33256PFD32A-	AS7C33256PFD32A-	AS7C33256PFD32A-	AS7C33256PFD32A-
X32 1Q11	166TQC	150TQC 133TQC		100TQC
x32 BGA	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-
X32 BGA	166BC	150BC	133BC	100BC
x32 TQFP	AS7C33256PFD32A-	AS7C33256PFD32A-	AS7C33256PFD32A-	AS7C33256PFD32A-
X32 TQ11	166TQI	150TQI	133TQI	100TQI
x32 BGA	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-
ASZ BOM	166BI	150BI	133BI	100BI
x36 TQFP	AS7C33256PFD36A-	AS7C33256PFD36A-	AS7C33256PFD36A-	AS7C33256PFD36A-
1.101.00	166TQC	150TQC	133TQC	100TQC
x36 BGA	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-
A30 BG/1	166BC	150BC	133BC	100BC
x36 TQFP	AS7C33256PFD36A-	AS7C33256PFD36A-	AS7C33256PFD36A-	AS7C33256PFD36A-
X30 TQTT	166TQI	150TQI	133TQI	100TQI
x36 BGA	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-
	166BI	150BI	133BI	100BI
x32 TQFP (2 CE)	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-
	166TQC	150TQC	133TQC	100TQC
x32 TQFP (2 CE)	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-	AS7C33256PFD32A2-
	166TQI	150TQI	133TQI	100TQI
x36 TQFP (2 CE)	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-
100 TQTT (2 CE)	166TQC	150TQC	133TQC	100TQC
x36 TQFP (2 CE)	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-	AS7C33256PFD36A2-
NOO TQTT (2 CE)	166TQI	150TQI	133TQI	100TQI

Part numbering guide

AS7C	33	256	PF	D	32/36	A	blank or 2	-XXX	TQ or B	C/I
1	2	3	4	5	6	7	8	9	10	11

- 1. Alliance Semiconductor SRAM prefix
- 2.Operating voltage: 33=3.3V 3.Organization: 256=256K
- 4. Pipeline-Flowthrough (each device has both options)
- 5.Deselect: D=Dual cycle deselect 6.Organization: 32=x32; 36=x36
- 7.Production version: A=first production version
- 8. Blank = the default: 3 CE (chip enable), 2 = 2 CE (2 chip enable)
- 9.Clock speed (MHz)
- 10.Package type: TQ=TQFP, B=BGA
- 11.Operating temperature: C=Commercial (0° C to 70° C); I=Industrial (-40° C to 85° C)

4/15/02; v.1.8 Alliance Semiconductor P. 14 of 14