TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/H Series

TMP95PW64FG

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION

How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = $(\overline{NMI}, INT0)$, which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

Document Change Notification

The purpose of this notification is to inform customers about the launch of the Pb-free version of the device. The introduction of a Pb-free replacement affects the datasheet. Please understand that this notification is intended as a substitute for a revision of the datasheet.

Changes to the datasheet may include the following, though not all of them may apply to this particular device.

1. Part number

Example: $TMPxxxxxxF \rightarrow TMPxxxxxxFG$

All references to the previous part number were left unchanged in body text. The new part number is indicated on the prelims pages (cover page and this notification).

2. Package code and package dimensions

Example: LQFP100-P-1414-0.50C \rightarrow LQFP100-P-1414-0.50F

All references to the previous package code and package dimensions were left unchanged in body text. The new ones are indicated on the prelims pages.

3. Addition of notes on lead solderability

Now that the device is Pb-free, notes on lead solderability have been added.

Ι

4. RESTRICTIONS ON PRODUCT USE

The previous (obsolete) provision might be left unchanged on page 1 of body text. A new replacement is included on the next page.

5. Publication date of the datasheet

The publication date at the lower right corner of the prelims pages applies to the new device.

1. Part number

Previous Part Number (in Body Text)	New Part Number
TMP95PW64F	TMP95PW64FG

2. Package code and dimensions

Previous Package Code (in Body Text)	New Package Code	
P-LQFP100-1414-0.50F	LQFP100-P-1414-0.50F	

^{*:} For the dimensions of the new package, see the attached Package Dimensions diagram.

3. Addition of notes on lead solderability

The following solderability test is conducted on the new device.

Solderability of lead free products

Test Parameter	Test Condition	Note
Solderability	Use of Sn-37Pb solder Bath Solder bath temperature = 230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature = 245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead free)	Pass: Solderability rate until forming ≥ 95%

4. RESTRICTIONS ON PRODUCT USE

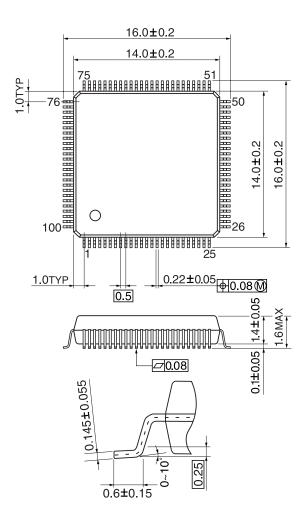
The following replaces the "RESTRICTIONS ON PRODUCT USE" on page 1 of body text.

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 - In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
 use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations that
 regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring
 as a result of noncompliance with applicable laws and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

5. Publication date of the datasheet


The publication date of this datasheet is printed at the lower right corner of this notification.

(Annex)

Package Dimensions

LQFP100-P-1414-0.50F

Unit: mm

III 2008-02-20

CMOS 16-Bit Microcontrollers

TMP95PW64F

1. **Outline and Features**

TMP95PW64 is an LSI for TMP95CW64 system evaluation. TMP95PW64 incorporates a 128K-byte one-time PROM. With an adapter socket, the user can write/verify data in the TMP95PW64's PROM using a general-purpose EPROM writer.

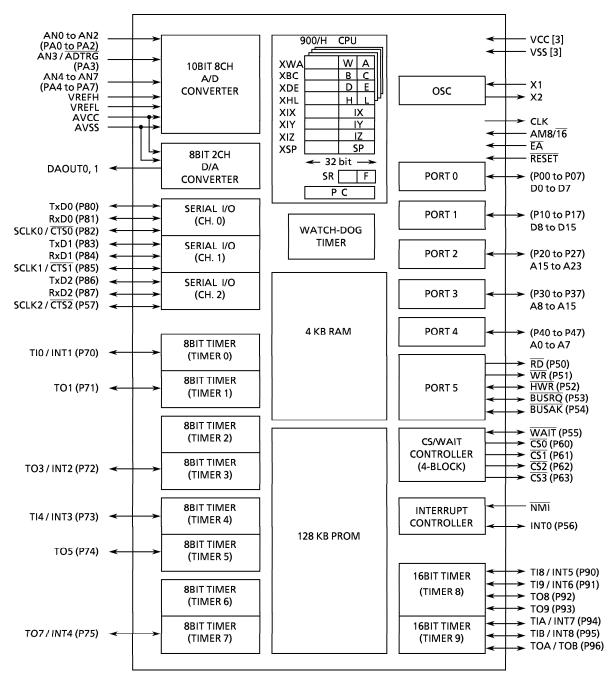
TMP95PW64 is pin-compatible with TMP95CW64, which incorporates a mask ROM. To achieve the same operations as TMP95CW64, write program data to the internal PROM.

Product Name	ROM	RAM	Package	Adapter Socket
TMP95PW64F	OTP 128 Kbyte	4 Kbyte	P-LQFP100-1414-0.50F	BM11129

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA

making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..


The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments transportation instruments traffic signal instruments. transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

95PW64-1 2003-03-31

Note: After a reset, functions in parentheses () are selected for the shared pins.

Figure 1 TMP95PW64 Block Diagram

2. Pin Assignment and Pin Functions

This section shows the TMP95PW64F pin assignment, and the names and an outline of the functions of the input/output pins.

2.1 Pin Assignment Diagram

Figure 2.1 is a pin assignment diagram for TMP95PW64F.

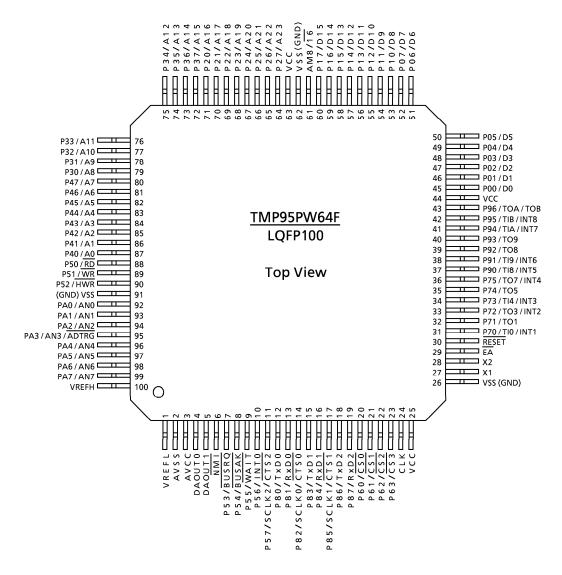


Figure 2.1 Pin Allocation Diagram (100-Pin LQFP)

2.2 Pin Names and Functions

TMP95PW64 has an MCU mode and a PROM mode.

(1) Pin Names and Functions in MCU Mode

Table 2.2 (1) lists the names and functions of the input/output pins.

Table 2.2 Pin Names and Functions (1/4)

Pin Name	Number of Pins	Input/Output	Function	
P00 to P07	8	Input/output	Port 0: I/O port. Input or output specifiable in units of bits	
/ D0 to D7		Input/output	Data: Data bus 0 to 7	
P10 to P17	8	Input/output	Port 1: I/O port. Input or output specifiable in units of bits	
/ D8 to D15		Input/output	Data: Data bus 8 to 15	
P20 to P27	8	Input/output	Port 2: I/O port. Input or output specifiable in units of bits	
/ A16 to A23		Output	Address: Address bus 16 to 23	
P30 to P37	8	Input/output	Port 3: I/O port. Input or output specifiable in units of bits	
/ A8 to A15		Output	Address: Address bus 8 to 15	
P40 to P47	8	Input/output	Port 4: I/O port. Input or output specifiable in units of bits	
/ A0 to A7		Output	Address: Address bus 0 to 7	
P50	1	Output	Port 50: Output-only port	
/ RD		Output	Read: Outputs strobe signal to read external memory (setting P5	
			<P50> = 0 and P5FC $<$ P50F> = 1 outputs strobe signal at all read	
			timings)	
P51	1	Output	Port 51: Output-only port.	
/ WR		Output	Write: Outputs strobe signal to write data on pins D0 to D7	
P52	1	Input/output	Port 52: I/O port (with built-in pull-up resistor)	
/ HWR		Output	Upper write: Outputs strobe signal to write data on pins D8 to D15	
P53	1	Input/output	Port 53: I/O port (with built-in pull-up resistor)	
/ BUSRQ		Input	Bus request: Input pin to request external bus release	
P54	1	Input/output	Port 54: I/O port (with built-in pull-up resistor)	
/BUSAK		Output	Bus acknowledge: Output pin to acknowledge that CPU received	
			BUSRQ and released external bus.	
P55	1	Input/output	Port 55: I/O port (with built-in pull up resistor)	
/WAIT		Input	Wait: Bus wait request pin for CPU (Effective when 1 + NWAIT mode,	
			or 0 + NWAIT mode. Set using chip select/wait control register.)	
P56	1	Input/output	Port 56: I/O port (with built-in pull-up resistor)	
/INTO		Input	Interrupt request pin 0: Interrupt request pin with programmable	
			level/rising edge. \int \int	

Table 2.2 Pin Names and Functions (2/4)

Pin Name	Number of Pins	Input/Output	Function
P57	1	Input/output	Port 57: I/O port (with built-in pull-up resistor)
/ SCLK2		Input/output	Serial clock input/output 2
/ CTS2		Input	Serial data ready to send 2 (Clear-to-send)
P60	1	Output	Port 60: Output-only port
/ CS0		Output	Chip select 0: Outputs 0 if address is within specified address range
P61	1	Output	Port 61: Output-only port
/ CS1		Output	Chip select 1: Outputs 0 if address is within specified address range
P62	1	Output	Port 62: Output-only port
/ CS2		Output	Chip select 2: Outputs 0 if address is within specified address range
P63	1	Output	Port 63: Output-only port
/ CS3		Output	Chip select 3: Outputs 0 if address is within specified address range
P70	1	Input/output	Port 70: I/O port
/TI0		Input	Timer input 0: Input pin for timer 0
/INT1		Input	Interrupt request pin 1: Rising-edge interrupt request pin
P71	1	Input/output	Port 71: I/O port.
/TO1		Output	Timer output 1: Output pin for timer 0 or 1
P72	1	Input/output	Port 72: I/O port
/TO3		Output	Timer output 3: Output pin for timer 2 or 3
/INT2		Input	Interrupt request pin 2: Rising-edge interrupt request pin
P73	1	Input/output	Port 73: I/O port
/TI4		Input	Timer input 4: Input pin for timer 4
/INT3		Input	Interrupt request pin 3: Rising-edge interrupt request pin
P74	1	Input/output	Port 74: I/O port
/TO5		Output	Timer output 5: Output pin for timer 4 or 5
P75	1	Input/output	Port 75: I/O port
/TO7		Output	Timer output 7: Output pin for timer 6 or 7
/INT4		Input	Interrupt request pin 4: Rising-edge interrupt request pin
P80	1	Input/output	Port 80: I/O port (with built-in pull-up resistor)
/TxD0		Output	Serial transmission data 0
P81	1	Input/output	Port 81: I/O port (with built-in pull-up resistor)
/RxD0		Input	Serial receive data 0
P82	1	Input/output	Port 82: I/O port (with built-in pull-up resistor)
/SCLK0		Input/output	Serial clock input/output 0
/ CTSO		Input	Serial data ready to send 0 (Clear-to-send)

Table 2.2 Pin Names and Functions (3/4)

Pin Name	Number of Pins	Input/Output	Function	
P83	1	Input/output	Port 83: I/O port (with built-in pull-up resistor)	
/TxD1		Output	Serial transmission data 1	
P84	1	Input/output	Port 84: I/O port (with built-in pull-up resistor)	
/RxD1		Input	Serial receive data 1	
P85	1	Input/output	Port 85: I/O port (with built-in pull-up resistor)	
/ SCLK1		Input/output	Serial clock input/output 1	
/CTS1		Input	Serial data ready to send 1 (Clear-to-send)	
P86	1	Input/output	Port 86: I/O port (with built-in pull-up resistor)	
/TxD2		Output	Serial transmission data 2	
P87	1	Input/output	Port 87: I/O port (with built-in pull-up resistor)	
/RxD2		Input	Serial receive data 2	
P90	1	Input/output	Port 90: I/O port	
/TI8		Input	Timer input 8: Input pin for timer 8	
/ INT5		Input	Interrupt request pin 5: Interrupt request pin with programmable	
			rising/falling edge	
P91	1	Input/output	Port 91: I/O port	
/TI9		Input	Timer input 9: Input pin for timer 8	
/INT6		Input	Interrupt request pin 6: Rising edge interrupt request pin	
P92	1	Input/output	Port 92: I/O port	
/TO8		Output	Timer output 8: Output pin for timer 8	
P93	1	Input/output	Port 93: I/O port	
/TO9		Output	Timer output 9: Output pin for timer 8	
P94	1	Input/output	Port 94: I/O port	
/TIA		Input	Timer input A: Input pin for timer 9	
/ INT7		Input	Interrupt request pin 7: Interrupt request pin with programmable rising/falling edge	
P95	1	Input/output	Port 95: I/O port	
/TIB		Input	Timer input B: Input pin for timer 9	
/INT8		Input	Interrupt request pin 8: Rising edge interrupt request pin	
P96	1	Input/output	Port 96: I/O port	
/TOA		Output	Timer input A: Output pin for timer 9	
/TOB		Output	Timer input B: Output pin for timer 9	
PA0 to PA2	3	Input	Port A0 to A2: Input-only port	
/ AN0 to AN2		Input	Analog input 0 to 2: A/D converter input pins	
PA3	1	Input	Port A3: Input-only port	
/ AN3		Input	Analog input 3: A/D converter input pin	
/ ADTRG		Input	External start trigger	

Table 2.2 Pin Names and Functions (4/4)

Pin Name	Number of Pins	Input/Output	Function
PA4 to PA7	4	Input	Port A4 to A7: Input-only port
/ AN4 to AN7		Input	Analog input 4 to 7: A/D converter input pins
DAOUT0	1	Output	D/A output 0: D/A converter 0 output pin
DAOUT1	1	Output	D/A output 1: D/A converter 1 output pin
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with programmable falling edge or both falling and rising edge
CLK	1	Output	Clock output: Outputs external clock divided by 4. Pulled up during reset.
ĒĀ	1	Input	External access: Connect to VCC.
AM8/16	1	Input	Address mode: External data bus width select pin
			Connect this pin to VCC. Data bus width at external access can be set by chip select/wait control register.
RESET	1	Input	Reset: Initializes TMP95PW64 (with built-in pull-up resistor)
VREFH	1	Input	Reference voltage input pin for A/D converter (high)
VREFL	1	Input	Reference voltage input pin for A/D converter (low)
AVCC	1		Power supply pin for A/D converter and reference voltage input pin for D/A converter: Connect to power supply
AVSS	1		GND pin for A/D converter and reference voltage input pin for D/A converter: Connect to GND
X1/X2	2	Input/output	Oscillator connecting pin
VCC	3		Collector supply pin: Connect all VCC pins to power supply
VSS	3		GND pin: Connect all VSS pins to GND (0 V)

Note: Software can be used to turn off the resistance of pull-up pins with resistors (except for the RESET pin).

(2) PROM Mode Pin Functions and Pin Processing

Tables 2.2 (2) and (3) show the names and functions of the input/output pins, and the pin processing.

Table 2.2 (2) Pin Names and Functions

Pin Function Name	Number of Pins	Input/ Output	Function	Pin Name (In MCU Mode)
A7 to A0	8			P20 to P27
A15 to A8	8	Input	Program memory address input	P17 to P10
A16	1			P34
D7 to D0	8	Input/output	Program memory data input/output	P07 to P00
CE	1	Input	Chip enable input	P35
ŌĒ	1	Input	Output control input	P37
PGM	1	Input	Program control input	P36
VPP	1	Power supply	12.75 V / 5 V (program power supply)	EA
vcc	4	Power supply	6.25 V / 5 V	VCC, AVCC
vss	4	Power supply	0 V	VSS, AVSS

Table 2.2 (3) Pin Names and Pin Processing

Pin Name	Number of Pins	Input/ Output	Pin Processing
P33	1	Input	Fixed to low level (SECURITY pin)
RESET	1	Input	Fixed to low level (set to PROM mode)
CLK	1	Input	Fixed to low level (set to FROM IIIode)
X1	1	Input	Connect oscillator and set to self-oscillation
X2	1	Output	Connect oscillator and set to self-oscillation
P32 to P30 P47 to P40 P57 to P52 P75 to P70 P87 to P80 P96 to P90 PA7 to PA0 AM8/16 NMI	48	Input	Fixed to high level
P51 to P50 P63 to P60	6	Output	
VREFH	1	lan an code	Open
VREFL	1	Input	

3. Operation

The following describes the structure and operation of the TMP95PW64 hardware.

In TMP95PW64, the internal ROM of TMP95CW64 is replaced by an internal PROM. Otherwise, TMP95PW64 is structurally and operationally identical to TMP95CW64. Accordingly, for functions not described here, see the TMP95CW64 section of the manual. TMP95PW64 supports MCU operating mode and PROM operating mode.

3.1 MCU Mode

(1) Setting and Function

Opening the CLK pin (setting to output) sets MCU mode. In MCU mode, TMP95PW64 operates the same as TMP95CW64.

(2) Memory Map

Figure 3.1 shows the memory map in MCU mode and the CPU access area in each addressing mode.

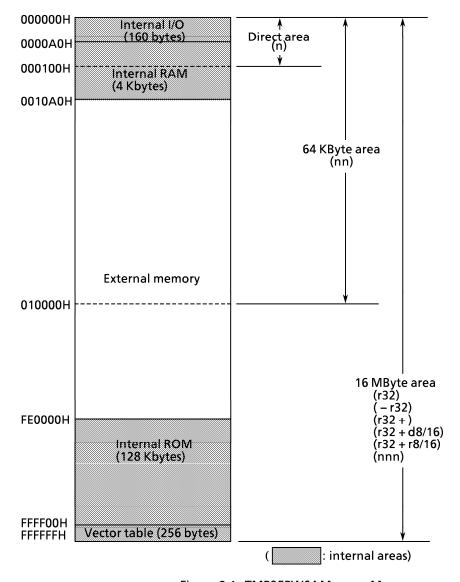


Figure 3.1 TMP95PW64 Memory Map

95PW64-9 2003-03-31

3.2 PROM Mode

(1) Setting and Functions

To set PROM mode, set the RESET and CLK pins to low level.

After PROM mode is set, applying V_{CC} = 6.25 V and V_{PP} = 12.75 V enters program mode. PROM can be verified by setting V_{CC} = V_{PP} = 5.0V .

Programs can be written and verified using a general-purpose PROM writer and an adapter socket. Set the ROM type in the general-purpose PROM writer according to the following conditions. (Set the ROM type as equivalent to TC571000D).

• Size: 1 Mbit (128 K×8 bit)

V_{PP}: 12.75 VTPW: 0.1 ms

• Electric signature function: No

Figure 3.2 (1) shows the pin settings in PROM mode.

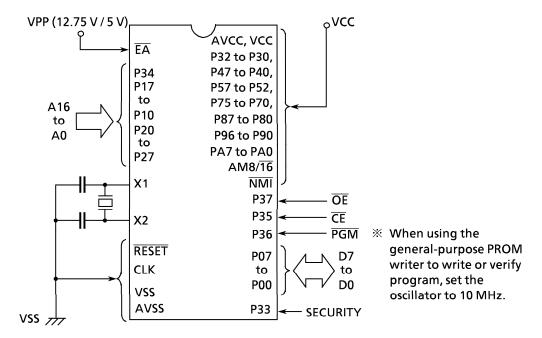


Figure 3.2 (1) PROM Mode Pin Settings

Electric Signature Cautions

TMP95PW64 does not support electric signature mode (hereafter called a signature). When a signature is used by a PROM writer, TMP95PW64 is damaged because 12 V (± 0.5 V) is applied to address pin 9 (A9). Therefore, use with the signature mode set off.

(2) Memory Map

The internal PROM addresses in PROM mode are 0000H to 1FFFFH. These correspond to MCU mode addresses FE0000H to FFFFFFH.

Figure 3.2 (2) shows a comparison of the MCU and PROM mode memory maps.

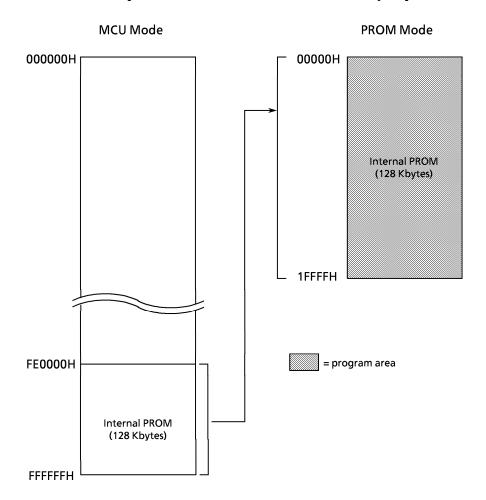


Figure 3.2 (2) Memory Map Comparison

(3) Program Mode

When TMP95PW64 is delivered, all bits are set to 1 (erased). Accordingly, program operations write 0 to the necessary bits. To enable writing, apply $V_{PP} = 12.75 \text{ V}$, $\overline{OE} = V_{IH}$, $\overline{CE} = V_{IL}$. The internal one-time PROM can be written to in any order, or may be written only at specified addresses.

(4) Adaptor Socket (BM11129)

BM11129 is an adapter socket used to write data to the internal one-time PROM in TMP95PW64 using a general-purpose PROM writer.

(5) Settings for Writing Program Using General-Purpose PROM Writer

Use a PROM writer equivalent to the TC571000D PROM writer.

- 1. Set BM11129 (hereafter called the adapter) switch (SW1) to the program side (NOR). (Note 1)
- 2. Set TMP95PW64F to the adapter socket. (Note 2)
- 3. Set the adapter socket to the PROM writer. (Note 2)
- 4. Set the PROM writer PROM type to TC571000D.
- 5. Set the PROM write start address to 0000H and the end address to 1FFFFH. (Note 3)
- 6. Write to the internal one-time PROM and verify according to the PROM writer operating procedure.
- Note 1: Writing data to the internal one-time PROM without setting the adapter switch (SW1) to the program side damages the device.
- Note 2: Adaptor socket pin 1 should be aligned with PROM writer socket pin 1.

 Setting the two the wrong way round will damage the MCU or PROM writer.
- Note 3: If data are written to addresses exceeding end address 1FFFFH, the data may be written to the 0000H to 1FFFFH addresses and program content may be damaged.

(6) High-Speed Programming Method

To enter program mode, apply V_{PP} = 12.75 V of program voltage with V_{SS} = 6.25 V and the \overline{RESET} and CLK pins at low level input.

Input valid address and input data, and set $\overline{\text{CE}}$ to low level input. Data can be written by applying a 0.1ms program (single) pulse to the $\overline{\text{PGM}}$ input. Verify that data are written to each address. If data are not correctly written, again apply a 0.1ms program pulse, repeating this procedure (up to 25 times) until the data are correctly written. After that, write data in the same way, simply changing the addresses and the input data. When all writing is complete, set VCC=VPP=5 V and verify all addresses.

Figure 3.2 (3) shows a writing flow chart.

Figure 3.2 (3) Writing Flow Chart (High-Speed Programming Method)

(7) SECURITY Bit

The TMP95PW64 PROM cell contains a built-in security bit (one bit). Writing 0 to this security bit prevents the internal PROM data from being read in PROM mode.

Programming security bit

In PROM mode, set the security pin (P33) to 1 and write FEH to address 00000H. Set the PROM write start address to 00000H, the end address to 00000H, and the data on address 00000H to FEH. Then write FEH to address 00000H according to the PROM writer operating procedure. This sets the internal PROM security bit.

(8) Cautions

- 1. When turning the V_{PP} power supply (12.75 V) off and on, the V_{CC} must be on .
- 2. Do not plug in or unplug the device with the V_{PP} power on.
- 3. When executing the program, the voltage applied to the VPP pin should not exceed the maximum rating (14 V).

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit
Power Supply Voltage	V cc	-0.5 to +6.5		V
Input Voltage	V _{IN}	except for EA pin EA pin	- 0.5 to Vcc + 0.5 - 0.5 to 14.0	V
Output current (total)	Σl _{OL}	+ 120		mA
Output current (total)	Σl _{OH}	– 120		mA
Power Dissipation ($Ta = +70^{\circ}C$)	P _D	600		mW
Soldering Temperature (10 s)	T _{SOLDER}	+ 260		°C
Storage Temperature	T _{STG}	- 65 to + 150		°C
Operating Temperature	T _{OPR}	– 20 t	o + 70	°C

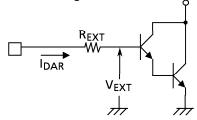
Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Electrical Characteristics

(1) $Vcc = +5 V \pm 10\%$, Ta = -20 to +70°C (fc = 8 to 25 MHz)

(Typical values are for $Ta = +25^{\circ}C$, VCC = +5 V.)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input Low Voltage (D0 to 15) Port 2 to A (except P56, P70, P72, P73, P75)	V IL V IL1		-0.3 -0.3	0.8 0.3 Vcc	\ \ \
RESET, NMI, INTO to 4 EA, AM8/16 X1	V _{IL2} V _{IL3} V _{IL4}		-0.3 -0.3 -0.3	0.25 Vcc 0.3 0.2 Vcc	
Input High Voltage (D0 to 15) Port 2 to A (except P56, P70, P72, P73, P75)	V IH V IH1		2.2 0.7 Vcc	Vcc + 0.3 Vcc + 0.3	V
RESET, NMI, INTO to 4 EA, AM8/16 X1	V 1H2 V 1H3 V 1H4		0.75 Vcc Vcc – 0.3 0.8 Vcc	Vcc + 0.3 Vcc + 0.3 Vcc + 0.3	\
Output Low Voltage	V _{OL}	I _{OL} = 1.6 mA		0.45	V
Output High Voltage	V OH V OH1 V OH2	I _{OH} =	2.4 0.75 Vcc 0.9 Vcc		V V V
Darlington Drive Current (8 Output Pins max.)	IDAR	$V_{EXT} = 1.5 V$ R _{EXT} = 1.1 kΩ	– 1.0	- 3.5	mA
Input Leakage Current Output Leakage Current	I _U I _{LO}	0.0≦ Vin≦ Vcc 0.2≦ Vin≦ Vcc – 0.2	0.02 (Typ) 0.05 (Typ)	±5 ±10	μ Α μ Α
Operating Current (RUN) IDLE2 IDLE1 STOP (Ta = -20 to +70°C) STOP (Ta = 0 to +50°C)	l cc	fc = 25 MHz $0.2 \le Vin \le Vcc - 0.2$ $0.2 \le Vin \le Vcc - 0.2$	40 (Typ) 30 (Typ) 3.5 (Typ) 0.5 (Typ)	50 40 10 50	mA mA mA μA
Power Down Voltage (@STOP, RAM Back up)	V _{STOP}	$V_{1L2} = 0.2 \text{ Vcc},$ $V_{1H2} = 0.8 \text{ Vcc}$	2.0	6.0	μ Α V
Pull Up Registance	R _{RP}		45	160	kΩ
Pin Capacitance	C 10	fc = 1 MHz		10	pF
Schmitt Width RESET, NMI, INTO to 4	V _{TH}		0.4	1.0 (Typ)	V


Note: I_{DAR} guarantees up to eight pins from any output port.

(2) $Vcc = +3 V \pm 10\%$, $Ta = -20 \text{ to } +70^{\circ}\text{C}$ (fc = 4 to 10 MHz)

(Typical values are for $Ta = +25^{\circ}C$, VCC = +3 V.)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input Low Voltage (D0 to 15) Port 2 to A (except P56, P70, P72, P73, P75)	V _{IL} V _{IL1}		-0.3 -0.3	0.6 0.3 Vcc	V V
RESET, NMI, INTO to 4 EA, AM8/16 X1	V _{IL2} V _{IL3} V _{IL4}		-0.3 -0.3 -0.3	0.25 Vcc 0.3 0.2 Vcc	V
Input High Voltage (D0 to 15) Port 2 to A (except P56, P70, P72, P73, P75)	V _{IH} V _{IH1}		2.0 0.7 Vcc	Vcc + 0.3 Vcc + 0.3	V
RESET, NMI, INTO to 4 EA, AM8/16 X1	V 1H2 V 1H3 V 1H4		0.75 Vcc Vcc – 0.3 0.8 Vcc	Vcc + 0.3 Vcc + 0.3 Vcc + 0.3	
Output Low Voltage	V OL	I _{OL} = 1.6 mA		0.45	V
Output High Voltage	Vон	I _{OH} = -400 μA	2.4		V
Input Leakage Current Output Leakage Current	I _{LI} I _{LO}	0.0≦ Vin≦ Vcc 0.2≦ Vin≦ Vcc – 0.2	0.02 (Typ) 0.05 (Typ)	±5 ±10	μ Α μ Α
Operating Current (RUN) IDLE2 IDLE1 STOP (Ta = -20 to +70°C) STOP (Ta = 0 to +50°C)	l cc	fc = 10 MHz 0.2 ≤ Vin ≤ Vcc - 0.2 0.2 ≤ Vin ≤ Vcc - 0.2	12 (Typ) 4.5 (Typ) 0.8 (Typ) 0.5 (Typ)	25 17 5 50 10	mA mA mA μA μA
Power Down Voltage (@ STOP, RAM Back up)	V _{STOP}	$V_{IL2} = 0.2 \text{ Vcc},$ $V_{IH2} = 0.8 \text{ Vcc}$	2.0	6.0	V
Pull Up Registance	R _{RP}		70	400	kΩ
Pin Capacitance	C 10	fc = 1 MHz		10	рF
Schmitt Width RESET, NMI, INTO to 4	V _{TH}		0.4	1.0 (Typ)	V

Refer: I_{DAR} definition diagram.

4.3 AC Electrical Characteristics

(1) $Vcc = +5 V \pm 10\%$, Ta = -20 to +70°C

(fc = 8 MHz to 25 MHz)

No.	Parameter	Symbol	Forn	nula	20 N	ЛHz	25 N	ЛHz	Unit
NO.	Farameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
1	Oscillation cycle (= x)	tosc	40	125	50		40		ns
2	Clock pulse width	t _{CLK}	2.0x – 40		60		40		ns
3	A0 to 23 valid → Clock hold	t _{AK}	0.5x - 20		5		0		ns
4	Clock valid → A0 to 23 hold	t _{KA}	1.5x – 60		15		0		ns
5	A0 to 23 valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{AC}	1.0x – 20		30		20		ns
6	$\overline{RD}/\overline{WR}$ rise \rightarrow A0 to 23 hold	t _{CA}	0.5x - 20		5		0		ns
7	A0 to 23 valid \rightarrow D0 to 15 input	t _{AD}		3.5x – 40		135		100	ns
8	$\overline{\text{RD}}$ fall \rightarrow D0 to 15 input	t _{RD}		2.5x – 45		80		55	ns
9	RD low pulse width	t _{RR}	2.5x - 40		85		60		ns
10	\overline{RD} rise \rightarrow D0 to 15 hold	t _{HR}	0		0		0		ns
11	WR low pulse width	t _{WW}	2.5x - 40		85		60		ns
12	D0 to 15 valid $\rightarrow \overline{WR}$ rise	t_{DW}	2.0x - 40		60		40		ns
13	WR rise →D0 to 15 hold	t _{WD}	0.5x - 10		15		10		ns
14	A0 to 23 valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{1 \text{WAIT}}{+ \text{n mode}}$	t _{AW}		3.5x – 90		85		50	ns
	A0 to 23 valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{0+\eta \text{WAIT}}{\text{mode}}$	t _{AW}		1.5x – 40		35		20	ns
15	$\overline{\text{RD}}/\overline{\text{WR}} \text{ fall} \rightarrow \overline{\text{WAIT}} \text{ hold} \qquad \begin{pmatrix} 1 \text{ WAIT} \\ + \text{ n mode} \end{pmatrix}$	t _{CW}	2.5x + 0		125		100		ns
	$\overline{\text{RD}}/\overline{\text{WR}} \text{ fall} \rightarrow \overline{\text{WAIT}} \text{ hold} \qquad \begin{pmatrix} 0+n \text{ WAIT} \\ \text{mode} \end{pmatrix}$	t _{CW}	0.5x + 0		25		20		ns
16	WR rise→ PORT valid	t _{CP}		200		200		200	ns
17	CS Low pulse width (PSRAM mode)	t _{CE}	3.0x - 40		110		80		ns
18	CS fall→D0 to 15 input (PSRAM mode)	t _{CEA}		3.0x – 60		90		60	ns
19	Address setup time (PSRAM mode)	t _{PASC}	0.5x – 15		10		5		ns
20	CS precharge time (PSRAM mode)	t _{PP}	1.0x – 10		40		30		ns

AC measuring conditions

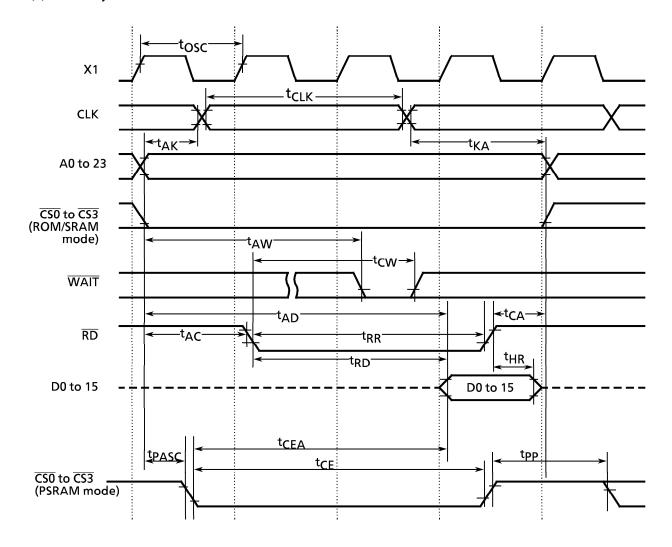
• Output level: High 2.2 V/Low 0.8 V , CL = 50 pF

• Input level: High 2.4 V / Low 0.45 V (D0 to D15)

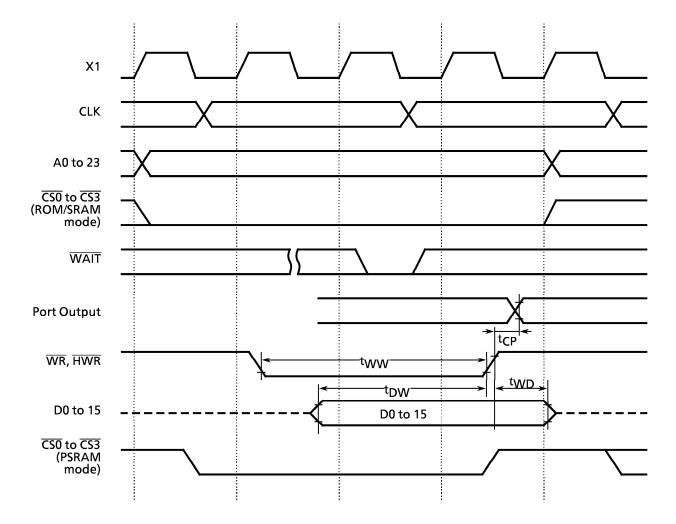
High 0.8 Vcc / Low 0.2 Vcc (except for D0 to D15)

(2) $Vcc = +3 V \pm 10\%$, Ta = -20 to +70°C

(fc = 4 MHz to 10 MHz)


No.	Parameter	Symbol	Forr	nula	10 N	ЛHz	Unit
INO.	raiailletei	Symbol	Min	Max	Min	Max	Onit
1	Oscillation cycle (= x)	tosc	100	250	100		ns
2	Clock pulse width	t _{CLK}	2.0x - 70		130		ns
3	A0 to 23 valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{AC}	1.0x - 60		40		ns
4	RD/WR rise→ A0 to 23 hold	t _{CA}	0.5x - 40		10		ns
5	A0 to 23 valid \rightarrow D0 to 15 input	t _{AD}		3.5x – 125		225	ns
6	$\overline{\text{RD}}$ fall \rightarrow D0 to 15 input	t _{RD}		2.5x – 115		135	ns
7	RD Low pulse width	t _{RR}	2.5x - 40		210		ns
8	RDrise→ D0 to 15 hold	t _{HR}	0		0		ns
9	WR Low pulse width	tww	2.5x - 40		210		ns
10	D0 to 15 valid → WR rise	t _{DW}	2.0x – 120		80		ns
11	WR rise →D0 to 15 hold	t _{WD}	0.5x - 40		10		ns
12	A0 to 23 valid $\rightarrow \overline{WAIT}$ input $\binom{1 \text{ WAIT}}{+ \text{ n mode}}$	t _{AW}		3.5x – 130		220	ns
	A0 to 23 valid $\rightarrow \overline{WAIT}$ input $\binom{0+\eta WAIT}{mode}$	t _{AW}		1.5x – 80		70	ns
13	$\overline{\text{RD}}/\overline{\text{WR}} \text{ fall} \rightarrow \overline{\text{WAIT}} \text{ hold} \qquad \begin{pmatrix} 1 \text{ WAIT} \\ + \text{ n mode} \end{pmatrix}$	t _{CW}	2.5x + 0		250		ns
	$\overline{\text{RD}}/\overline{\text{WR}} \text{ fall} \rightarrow \overline{\text{WAIT}} \text{ hold} \qquad \begin{pmatrix} 0 + n \text{ WAIT} \\ \text{mode} \end{pmatrix}$	t _{CW}	0.5x + 0		50		ns
14	WR rise→ PORT valid	t _{CP}		200		200	ns
15	CS Low pulse width (PSRAM mode)	t _{CE}	3.0x – 70		230		ns
16	$\overline{\text{CS}}$ fall \rightarrow D0 to 15 input (PSRAM mode)	t _{CEA}		3.0x – 160		140	ns
17	Address setup time (PSRAM mode)	t _{PASC}	0.5x - 30		20		ns
18	CS precharge time (PSRAM mode)	t _{PP}	1.0x – 40		60		ns

AC measuring conditions


• Output level: High 0.7x Vcc / Low 0.3x Vcc, CL = 50 pF

• Input level: High 0.9x Vcc / Low 0.1x Vcc

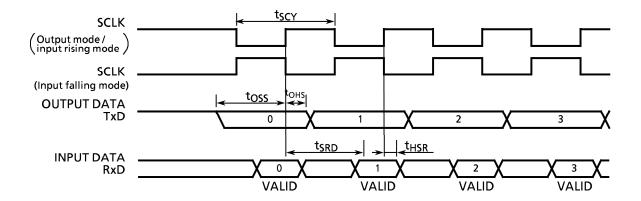
(3) Read Cycle

(4) Write Cycle

4.4 Serial Channel Timing

- (1) I/O interface mode
 - ① SCLK input mode

 $Vcc = +5 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 8 to 25 MHz) $Vcc = +3 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 4 to 10 MHz)


Parameter	Cumbal	Formula			10 MHz		25 MHz		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
SCLK cycle	t _{SCY}	16x		1.6		0.64		μS	
Output Data → SCLK rise/fall*	toss	t _{SCY} /2 – 5x – 50		250		70		ns	
SCLK rise/fall*→Output Data hold	t _{OHS}	5x – 100		400		100		ns	
SCLK rise/fall*→input data hold	t _{HSR}	0		0		0		ns	
SCLK rise/fall* → valid data input	t _{SRD}		t _{SCY} – 5x – 100		1000		340	ns	

^{*)} SCLK rise/fall: In SCLK rising edge mode, SCLK rising edge timing; in SCLK falling edge mode, SCLK falling edge timing

② SCLK output mode

 $Vcc = +5 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 8 to 25 MHz) $Vcc = +3 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 4 to 10 MHz)

Davamatas	اء مامس	Formula			VIHz	25 [Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle (programmable)	t _{SCY}	16x	8192x	1.6	819.2	0.64	327.6	μS
Output Data \rightarrow SCLK rising edge	toss	t _{SCY} – 2x – 150		1250		410		ns
SCLK rising edge \rightarrow Output Data hold	t _{OHS}	2x - 80		120		0		ns
SCLK rising edge → Input Data hold	t _{HSR}	0		0		0		ns
SCLK rising edge → valid data input	t _{SRD}		t _{SCY} – 2x – 150		1250		410	ns

(2) UART Mode (SCLK0 to 2 External Input)

 $Vcc = +5 V \pm 10\%, Ta = -20 to +70^{\circ}C (fc = 8 to 25 MHz) \\ Vcc = +3 V \pm 10\%, Ta = -20 to +70^{\circ}C (fc = 4 to 10 MHz)$

Parameter	Symbol	Formula			10 MHz		25 MHz	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
SCLK cycle	t _{SCY}	4x + 20		420		180		ns
Low-level SCLK pulse width	t _{SCYL}	2x + 5		205		85		ns
High-level SCLK pulse width	t _{SCYH}	2x + 5		205		85		ns

4.5 A/D Conversion Characteristics

 $Vcc = +5 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 8 to 25 MHz) $Vcc = +3 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 4 to 10 MHz)

Param	eter	Symbol	Test Conditions	Min	Тур	Max	Unit
A/D analog reference s	A/D analog reference supply voltage (+)			Vcc – 0.2		Vcc	
A/D analog reference supply voltage (–)		V _{REFL}		Vss		Vss + 0.2	
Analog reference volta	age	AV _{CC}		Vcc – 0.2		Vcc] v
Analog reference volta	age	AVSS		Vss		Vss + 0.2]
Analog input voltage		V _{AIN}		V _{REFL}		V _{REFH}]
Analog reference	<vrefon> = 1</vrefon>	I _{REF}	Vcc = 5 V ± 10%			3.7	mA
voltage supply			Vcc = 3 V ± 10%			2.2	
current	<vrefon> = 0</vrefon>	1	Vcc = 2.7 to 5.5 V		0.02	5.0	μA
Total tolerance		E _T	Vcc = 5 V ± 10%		± 1	± 3	I.CD
(excludes quantization	error)		Vcc = 3 V ± 10%		± 1	± 3	LSB

Note 1: $1LSB = (VREFH - VREFL) / 2^{10} [V]$

Note 2: Power supply current ICC from the VCC pin includes the power supply current from the AVCC pin.

4.6 D/A Conversion Characteristics

 $Vcc = +5 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 8 to 25 MHz) $Vcc = +3 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 4 to 10 MHz)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Analog reference voltage	AV _{CC}		Vcc – 0.2		Vcc	V
Analog reference voltage	AV _{SS}		V _{SS}		Vss + 0.2	V
Total tolerance		$R = 1 \text{ M}\Omega \text{ (Note)}$ $R = 5 \text{ M}\Omega \text{ (Note)}$ $R = 10 \text{ M}\Omega \text{ (Note)}$			7.0 4.0 3.5	LSB LSB LSB
Differential linear error				2.0		LSB

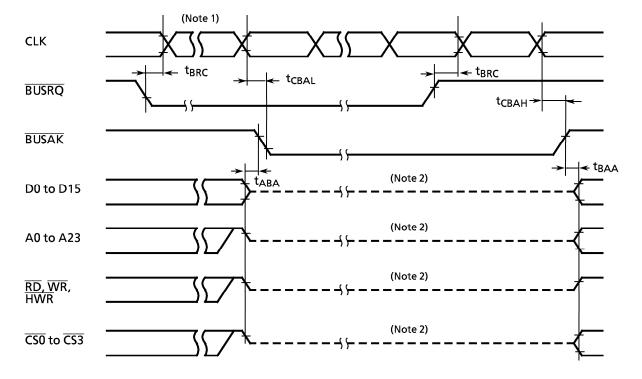
Note: R is the external load resistance on the D/A converter output pin (DAOUT0, DAOUT1).

4.7 Event Counter (External Input Clocks: TIO, TI4, TI8, TI9, TIA, TIB)

 $Vcc = +5 \ V \pm 10\%, Ta = -20 \ to \ +70^{\circ}C \ (fc = 8 \ to \ 25 \ MHz)$ $Vcc = +3 \ V \pm 10\%, Ta = -20 \ to \ +70^{\circ}C \ (fc = 4 \ to \ 10 \ MHz)$

Parameter	Symbol	Calcu	10 MHz		25 MHz		Unit	
rarameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
External input clock cycle	t _{VCK}	8x + 100		900		420		ns
External low-level input clock pulse width	t _{VCKL}	4x + 40		440		200		ns
External high-level input clock pulse width	t _{VCKH}	4x + 40		440		200		ns

4.8 Interrupt Operation


 $Vcc = +5 V \pm 10\%, Ta = -20 to +70^{\circ}C (fc = 8 to 25 MHz) \\ Vcc = +3 V \pm 10\%, Ta = -20 to +70^{\circ}C (fc = 4 to 10 MHz)$

Parameter	Sumbal	Calculator		10 MHz		25 MHz		Unit
rarameter	Symbol	Min	Max	Min	Max	Min	Max	Onit
NMI, INTO to 4 low-level pulse width	t _{INTAL}	4x		400		160		ns
NMI, INTO to 4 high-level pulse width	t _{INTAH}	4x		400		160		ns
INT5 to INT8 low-level pulse width	t _{INTBL}	8x + 100		900		420		ns
INT5 to INT8 high-level pulse width	t _{INTBH}	8x + 100		900		420		ns

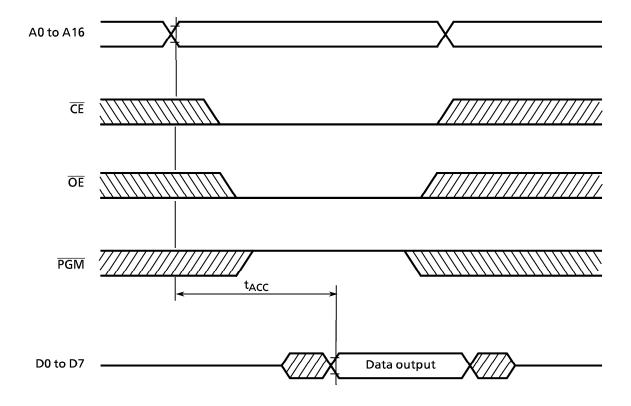
4.9 Bus Request/Bus Acknowledge Timing

 $Vcc = +5 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 8 to 25 MHz) $Vcc = +3 V \pm 10\%$, $Ta = -20 to +70^{\circ}C$ (fc = 4 to 10 MHz)

		Calculator		10 MHz		25 MHz		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
BUSRQ setup time for CLK	t _{BRC}	120		120		120		ns
CLK→BUSAK fall	t _{CBAL}		2.0x + 120		320		200	ns
CLK→BUSAK rise	t _{CBAH}		0.5x + 40		90		60	ns
Time from output buffer off until BUSAK falling edge	t _{ABA}	0	80	0	80	0	80	ns
Time from BUSAK rising edge until output buffer on	t _{BAA}	0	80	0	80	0	80	ns

Note 1: When BUSRQ goes to low level to request bus release, if the current bus cycle is yet complete due to a wait, the bus is not released until the wait completes.

Note 2: The dotted line indicates only that the output buffer is off, not that the signal is at middle level. Immediately after bus release, the signal level prior to the bus release is held dynamically by the external load capacitance. Therefore, designs should allow for the fact that when using an external resistor or similar to fix the signal level while the bus is released, after bus release a delay occurs before the signal goes to its fixed level (due to the CR time constant). The internal programmable pull-up resistor continues to function in accordance with the internal signal level.

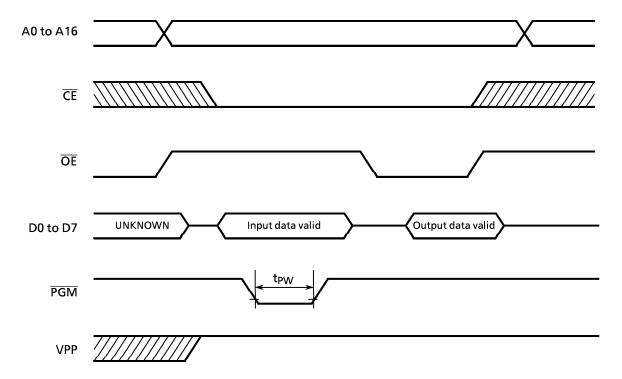

4.10 Read Operations in PROM Mode

DC / AC Electrical Specifications

 $Ta = 25 \pm 5^{\circ}C$, $Vcc = 5 V \pm 10\%$

Parameter	Symbol	Test Condition	Min	Max	Unit
V _{PP} Read Voltage Input High Voltage (A0 to A16, CE, OE, PGM) Input Low Voltage (A0 to A16, CE, OE, PGM)	V _{PP} V _{IH} V _{IL}		4.5 2.2 - 0.3	5.5 V _{CC} + 0.3 0.8	> >
Address to Output Delay	t _{ACC}	C _L = 50 _P F	-	2.25TCYC + α	ns

TCYC = 400 ns (10 MHz Clock) α = 200 ns



4.11 Program Operations in PROM Mode

DC / AC Electrical Specifications

 $Ta = 25 \pm 5$ °C, $Vcc = 6.25 V \pm 0.25 V$

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Programing Supply Voltage	V _{PP}		12.50	12.75	13.00	V
Input High Voltage	V_{IH}		2.6		$V_{CC} + 0.3$	V
(D0 to D7, A0 to A16, CE, OE, PGM)						
Input Low Voltage	V_{IL}		- 0.3		0.8	v
(D0 to D7, A0 to A16, CE, OE, PGM)						
V _{CC} Supply Current	Icc	fc = 10 MHz	_		50	mA
V _{PP} Supply Current	Ірр	$V_{PP} = 13.00 \text{ V}$	_		50	mA
PGM Program Pulse Width	t _{PW}	C _L = 50 _P F	0.095	0.1	0.105	ms

Note 1: When turning the V_{PP} (12.75 V) power supply off and on, ensure that V_{CC} is on.

Note 2: Do not plug in or unplug the device when the VPP power (12.75 V) is on. (This can damage the device.)

Note 3: The V_{PP} pin maximum rating is 14 V. When the program is executed, the voltage applied, including overshoot, should not exceed 14 V.

2003-03-31