

Micropower 300-mA CMOS LDO Regulator With Error Flag

FEATURES

- Input Voltage: 2.35-6.0 V
- Fixed 1.8-V, 2.5-V, 2.8-V, 3.0-V, 3.3-V, 5.0-V, or Adjustable Output Voltage Options
- Low 120-mV Dropout at 300-mA Load
- Guaranteed 300-mA Output Current
- 500-mA Peak Output Current Capability
- Uses Low ESR Ceramic Output Capacitor
- Fast Load and Line Transient Response
- Only 100-μV(rms) Noise With Noise Bypass Capacitor

- 1-μA Maximum Shutdown Current
- Built-in Short Circuit and Thermal Protection
- Out-Of-Regulation Error Flag (Power_Good)

APPLICATIONS

- Cellular Phones
- Laptop and Palm Computers
- PDA, Digital Still Cameras

DESCRIPTION

The Si91821 is a 300-mA CMOS LDO (low dropout) voltage regulator. The device features ultra low ground current and dropout voltage to prolong battery life in portable electronics. The Si91821 offers line and load transient response and ripple rejection superior to that of bipolar or BiCMOS LDO regulators. The device is designed to maintain regulation while delivering 500-mA peak current. This is useful for systems that have high surge current upon turn-on. The Si91821 is designed to drive the lower cost ceramic, as well as tantalum, output capacitors. The device is guaranteed stable from maximum load current down to 0-mA load. In addition, an external noise bypass

capacitor connected to the device's C_{NOISE} pin will lower the LDO's output noise for low noise applications.

The Si91821 also includes an out-of-regulation error flag. When the output voltage is 5% below its nominal output voltage, the error flag output goes low.

The Si91821 is available in both standard and lead (Pb)-free MSOP-8 packages and is specified to operate over the industrial temperature range of -40 °C to 85 °C.

TYPICAL APPLICATIONS CIRCUITS

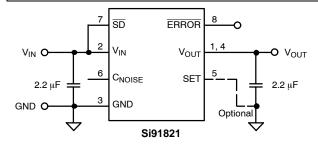


Figure 1. Fixed Output

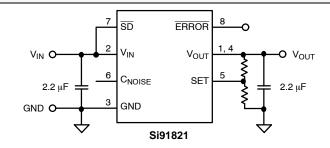


Figure 2.. Adjustable Output

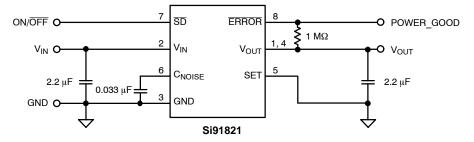


Figure 3. Fixed Output, Low Noise, Full Features Application

ABSOLUTE MAXIMUM RATINGS

	Power Dissipation (Package) ^a 8-Pin MSOP ^b
Output Voltage, V_{OUT}	8-Pin MSOP ^b
Storage Temperature, T _{STG} –55°C to 150°C ESD (Human Body Model) 2 kV	 a. Device mounted with all leads soldered or welded to PC board. b. Derate 10 mW/°C above T_A = 25°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE

Input Voltage, V _{IN}	louT
	Operating Ambient Temperature, T _A 40°C to 85°C Operating Junction Temperature, T _J 40°C to 125°C
C = 2.2 v.E. C = 2.2 v.E. (coromic VSP or V7P typo)	oromio)

 $\begin{aligned} &C_{IN}=2.2~\mu F,~C_{OUT}=2.2~\mu F~(ceramic,~X5R~or~X7R~type)~,~C_{NOISE}=0.033~\mu F~(ceramic)\\ &C_{OUT}Range=1~\mu F~to~10~\mu F~(\pm~10\%,~x5R~or~x7R~type)\\ &C_{IN}\geq~C_{OUT} \end{aligned}$

SPECIFICATIONS									
		Test Conditions Unless Otherwise Specified			Limits -40 to 85°C				
Parameter	Symbol	$V_{IN} = V_{OUT(nom)} + 1 V_{OUT}$ $C_{IN} = 2.2 \mu F, C_{OUT} = 2.3 V_{OUT}$		Temp ^a	Minb	Турс	Maxb	Unit	
Input Voltage	V _{IN}				2.35 6.0		V		
Output Voltage	V _{OUT}	Adjustable V	ersion	Full	1.5		5.0	v	
Output Voltage Accuracy	ν.	1 mA ≤ I _{OUT} ≤ 300 mA		Room	-1.5		1.5	%	
(to stated output voltage)	V _{OUT}	1 IIIA > 10UT >	300 IIIA	Full	-2.5		2.5	V _{OUT(nom)}	
Feedback Voltage (ADJ Version)	ν.			Room	1.191	1.215	1.239		
reedback voltage (ADJ version)	V _{SET}			Full	1.179		1.251	\ \ \	
Line Regulation (Except 5-V Version)		From $V_{IN} = V_{OUT(nom)} + 1 V$ to $V_{OUT(nom)} + 2 V$		Full	-0.18		0.18		
Line Regulation (5-V Version)	$\frac{\Delta V_{OUT} \times 100}{V_{IN} \times V_{OUT(nom)}}$	From V _{IN} = 5.5 V to 6 V		Full	-0.18		0.18	%/V	
Li D	$V_{IN} \times V_{OUT(nom)}$	V _{OUT} = 1.5 V From V _{IN} = 2.5 V to 3.5 V		Full	-0.18		0.18		
Line Regulation (ADJ Version)		V _{OUT} = 5 V From V _{IN} = 5.5 V to 6 V		Full	-0.18		0.18		
		I _{OUT} = 10 mA		Room		5	20		
Dropout Voltaged	V _{IN} – V _{OUT}	I _{OUT} = 200 mA		Full		80	135	mV	
		I _{OUT} = 300 mA		Full		120	200		
		ı 0 = _{TUO} l	mA	Full		150	270		
Ground Pin Current	I _{GND}	I _{OUT} = 200 mA		Room		500		uΑ	
		I _{OUT} = 300	mA	Room		600		μΑ	
Shutdown Supply Current	I _{IN(off)}	V _{SD} = 0 V		Room		0.1	1		
Peak Output Current	I _{O(peak)}	$V_{OUT} \ge 0.95 \text{ x } V_{OUT(nom)}, t_{pw} = 2 \text{ ms}$		Room	500			mA	
Output Noise Voltage	e _N .	BW = 10 Hz to 100 kHz I _{OUT} = 150 mA	w/o C _{NOISE}	Room		260			
			C _{NOISE} = 0.1 μF	Room		37		μV (rms)	
		BW = 10 to 100 kHz I _{OUT} = 10 mA	C _{NOISE} = 33 nF	Room		54			
	n ΔV _{OUT} /ΔV _{IN}		f = 1 kHz	Room		60			
Ripple Rejection		I _{OUT} = 150 mA	f = 10 kHz	Room		50		dB	
			f = 100 kHz	Room		40			

SPECIFICATIONS								
		Test Conditions Unless Otherwise Specified			Limits -40 to 85°C			
Parameter	Symbol	$V_{IN} = V_{OUT(nom)} + 1 \text{ V, } I_{OUT} = 1 \text{ mA}$ $C_{IN} = 2.2 \mu\text{F, } C_{OUT} = 2.2 \mu\text{F, } V_{SD} = 1.5 \text{ V}$	Temp ^a	Minb	Турс	Max ^b	Unit	
Dynamic Line Regulation	$\Delta V_{O(line)}$	V_{IN} : $V_{OUT(nom)}$ + 1 V to $V_{OUT(nom)}$ + 2 V t_r/t_f = 5 μ s, I_{OUT} = 250 mA	Room		10	mV		
Dynamic Load Regulation	$\Delta V_{O(load)}$	I_{OUT} : 1 mA to 150 mA, t_r/t_f = 2 μs	Room		30			
Turn-on Overshoot	ΔV _{OOS}	V_{IN} followed by \overline{SD} = High Event $C_{NOISE} \le 100 \text{ nF}$	Room			2.5	%	
V _{OUT} Turn-On-Time	ton	C_{OUT} = 10 μ F, V_{OUT} to 90% of final value, V_{IN} = 3.6 V	Room		350		μS	
Thermal Shutdown			•		•			
Thermal Shutdown Junction Temp	T _{J(s/d)}		Room 16		165			
Thermal Hysteresis	T _{HYST}		Room		20		°C	
Short Circuit Current	I _{SC}	V _{OUT} = 0 V	Room		800		mA	
Shutdown Input								
<u> </u>	V _{IH}	High = Regulator ON (Rising)	Full	1.5		V_{IN}	v	
SD Input Voltage	V _{IL}	Low = Regulator OFF (Falling)	Full			0.4		
<u></u>	I _{IH}	V _{SD} = 0 V, Regulator OFF	Room	0.01				
SD Input Current ^e	I _{IL}	V _{SD} = 6 V, Regulator ON	Room		1.0		μΑ	
Shutdown Hysteresis	V _{HYST}		Full		100		mV	
Error Output								
Output High Leakage	l _{OFF}	ERROR = V _{OUT(nom)}	Full		0.01	2	μΑ	
Output Low Voltage	V _{OL}	I _{SINK} = 2 mA	Full			0.4		
Power_Good Trip Threshold ^{f, g} (Rising)	V_{TH}		Full	0.93 x V _{OUT}	0.95 x V _{OUT}	0.97 x V _{OUT}	V	
Hysteresis ^f	eresis ^f V _{HYST}		Room		2% x V _{OUT}			
Error Delay	t _{DELAY}	C _{NOISE} ≤ 100 nF	Full			10	μS	

- b.
- c. d.
- tes $Room = 25^{\circ}C$, Full = -40 to $85^{\circ}C$. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing and are measured at $T_A = 25^{\circ}C$. The dropout voltage is defined as $V_{IN} V_{OUT}$ when V_{OUT} is 100 mV below the value of V_{OUT} for $V_{IN} = V_{OUT} + 2$ V. This is applicable for voltages of 2.5 V or higher. The device's shutdown pin includes a typical 6-M Ω internal pull-down resistor connected to ground. V_{OUT} is defined as the output voltage of the DUT at 1 mA. Typical only, from $V_{OUT} = 2.0$ V to $V_{OUT} = 1.5$ V.

TIMING WAVEFORMS

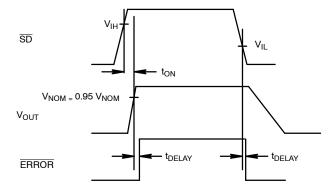
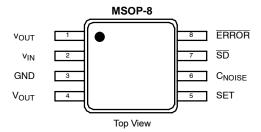



Figure 4. Timing Diagram for Power-Up

PIN CONFIGURATION

PIN DESCRIPTION				
Pin Number	Name	Function		
1, 4	V _{OUT}	Output voltage. Connect C _{OUT} between this pin and ground.		
2	V _{IN}	Input supply pin. Bypass this pin with a 2.2-μF ceramic or tantalum capacitor to ground.		
3	GND	Ground pin. Local ground for C _{NOISE} and C _{OUT} .		
5	SET	For fixed output voltage versions, this pin could be connected to GND. For adjustable output voltage version, this voltage feedback pin sets the output voltage via an external resistor divider.		
6	C _{NOISE}	Noise bypass pin. For low noise applications, a 0.01-μF or larger ceramic capacitor should be connected from this pin to ground.		
7	SD	By applying less than 0.4 V to this pin, the device will be turned off. Connect this pin to V _{IN} if unused.		
8	ERROR	This open drain output is an error flag output which goes low when V _{OUT} drops 5% below its nominal voltage.		

BLOCK DIAGRAM

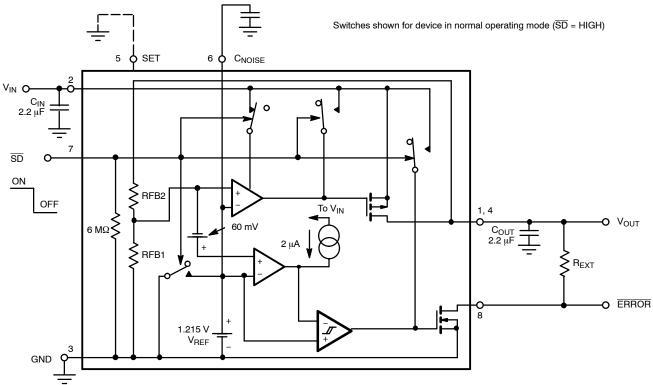
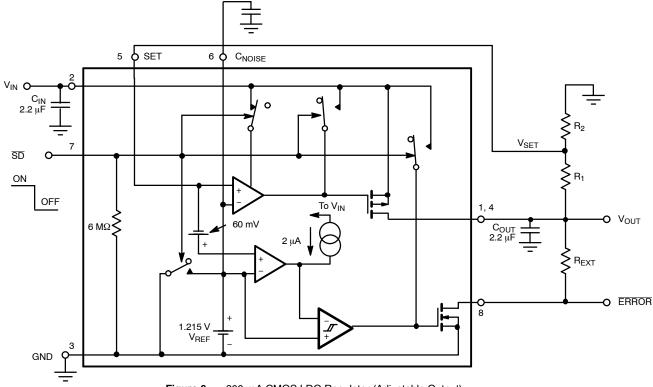



Figure 5. 300-mA CMOS LDO Regulator

300-mA CMOS LDO Regulator (Adjustable Output)

DETAILED DESCRIPTION

The Si91821 is a low drop out, low quiescent current, and very linear regulator with very fast transient response. It is primarily designed for battery powered applications where battery run time is at a premium. The low quiescent current allows extended standby time while low drop out voltage enables the system to fully utilize battery power before recharge. The Si91821 is a very fast regulator with bandwidth exceeding 50 kHz while maintaining low quiescent current at light load conditions. With this bandwidth, the Si91821 is the fastest LDO available today. The Si91821 is stable with any output capacitor type from 1 μF to 10.0 μF . However, X5R or X7R ceramic capacitors are recommended for best output noise and transient performance.

V_{IN}

 $V_{\mbox{\footnotesize{IN}}}$ is the input supply pin. The bypass capacitor for this pin is not critical as long as the input supply has low enough source impedance. For practical circuits, a 1.0- $\mu\mbox{\footnotesize{F}}$ or larger ceramic capacitor is recommended. When the source impedance is not low enough and/or the source is several inches from the Si91821, then a larger input bypass capacitor is needed. It is required that the equivalent impedance (source impedance, wire, and trace impedance in parallel with input bypass capacitor impedance) must be smaller than the input impedance of the Si91821 for stable operation. When the source impedance, wire, and trace impedance are unknown, it is recommended that an input bypass capacitor be used of a value that is equal to or greater than the output capacitor.

V_{OUT}

 V_{OUT} is the output voltage of the regulator. Connect a bypass capacitor from V_{OUT} to ground. The output capacitor can be any value from 1.0 μF to 10.0 μF . A ceramic capacitor with X5R or X7R dielectric type is recommended for best output noise, line transient, and load transient performance.

GND

Ground is the common ground connection for V_{IN} and $V_{\underline{\text{OUT}}}$. It is also the local ground connection for $C_{\text{NOISE}},$ SET, and $\overline{\text{SD}}.$

SET

SET is not connected internally for the fixed voltage version. Therefore, it can be connected to GND optionally. For the adjustable output version, use a resistor divider R_1 and R_2 , connect R_1 from V_{OUT} to SET and R_2 from SET to ground. R_2 should be in the 25-k $\!\Omega$ to 150-k $\!\Omega$ range for low power consumption, while maintaining adequate noise immunity.

The formula below calculates the value of R_1 , given the desired output voltage and the R_2 value.

$$R_{1} = \frac{\left(V_{OUT} - V_{SET}\right)R_{2}}{V_{SET}}$$

$$V_{SET} \text{ is nominally 1.215 V.}$$
(1)

SHUTDOWN (SD)

 \overline{SD} controls the turning on and off of the Si91821. V_{OUT} is guaranteed to be on when the \overline{SD} pin voltage equals or is greater than 1.5 V. V_{OUT} is guaranteed to be off when the \overline{SD} pin voltage equals or is less than 0.4 V. During shutdown mode, the Si91821 will draw less than 2- μ A current from the source. To automatically turn on V_{OUT} whenever the input is applied, tie the \overline{SD} pin to V_{IN} .

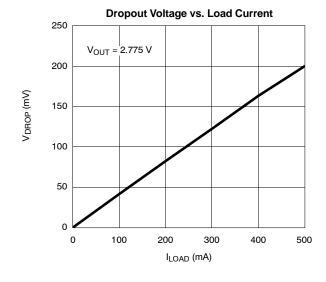
ERROR

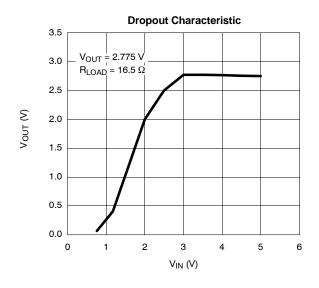
 $\overline{\text{ERROR}}$ is an open drain output that goes low when V_{OUT} is less than 5% of its normal value. As with any open drain output, an external pull up resistor is needed. This function is active in shutdown.

The ERROR pin must be left opened if not used.

CNOISE

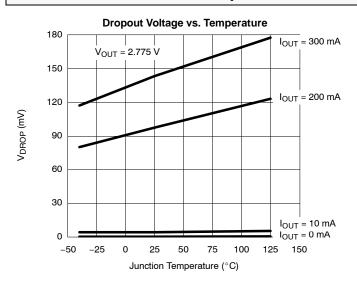
For low noise application, connect a high frequency ceramic capacitor from C_{NOISE} to ground. A 0.01- μF or a 0.1- μF X5R or X7R is recommended.

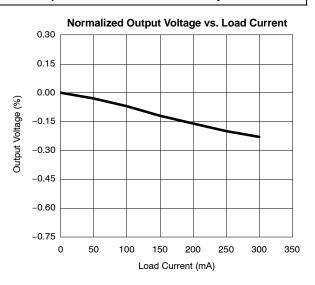


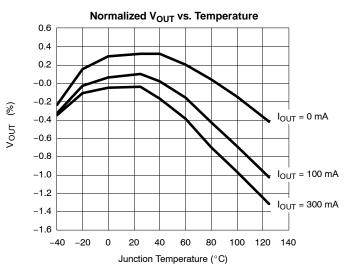


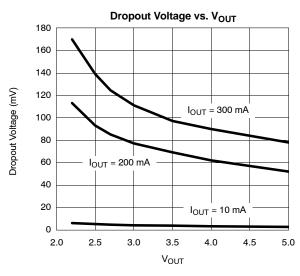
ORDERING INFORMATION						
Standard Part Number	Lead (Pb)-Free Part Number	Marking	Voltage	Temperature Range	Package	
Si91821DH-18-T1	Si91821DH-18-T1—E3	1821 1800	1.80 V			
Si91821DH-25-T1	Si91821DH-25-T1—E3	1821 2500	2.50 V			
Si91821DH-28-T1	Si91821DH-28-T1—E3	1821 2800	2.80 V			
Si91821DH-30-T1	Si91821DH-30-T1—E3	1821 3000	3.00 V	–40 to 85°C	MSOP-8	
Si91821DH-33-T1	Si91821DH-33-T1—E3	1821 3300	3.30 V			
Si91821DH-50-T1	Si91821DH-50-T1—E3	1821 5000	5.00 V			
Si91821DH-AD-T1	Si91821DH-AD-T1—E3	1821 ADJ	Adjustable			

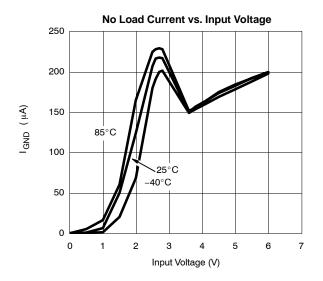
Eval Kit	Temperature Range	Board Type
Si91821DB	−40 to 85°C	Surface Mount

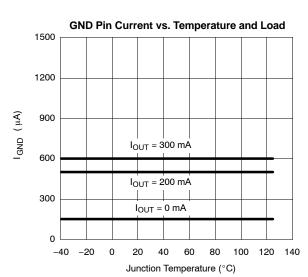

TYPICAL CHARACTERISTICS (INTERNALLY REGULATED, 25°C UNLESS NOTED)

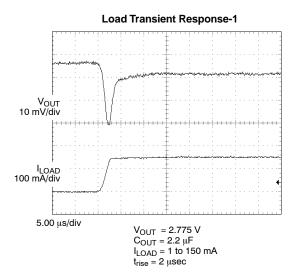


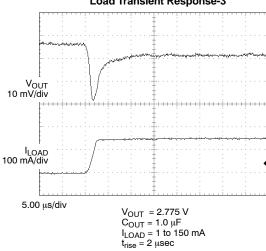


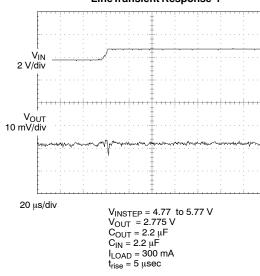


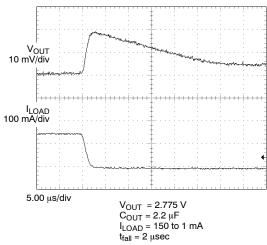

TYPICAL CHARACTERISTICS (INTERNALLY REGULATED, 25°C UNLESS NOTED)

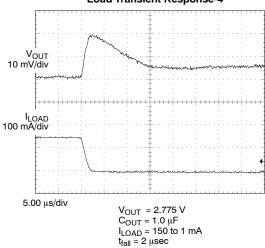


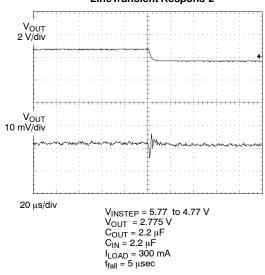




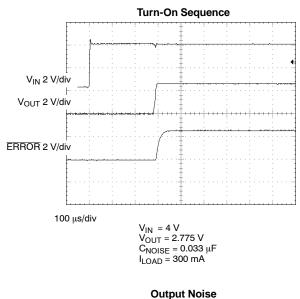

TYPICAL WAVEFORMS

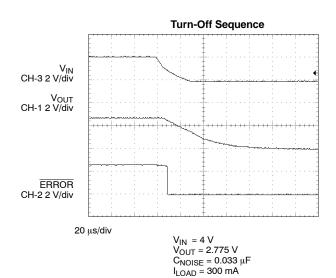

Load Transient Response-3

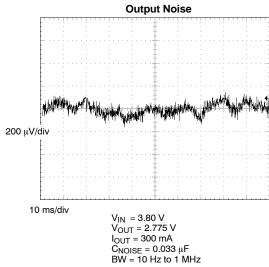

LineTransient Response-1

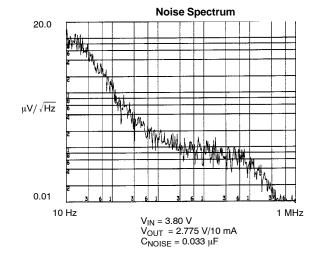

Load Transient Response-2

Load Transient Response-4




LineTransient Respons-2





TYPICAL WAVEFORMS

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?71614.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08