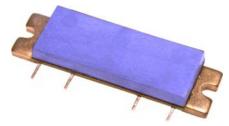


Sirenza Microdevices' **XD010-04S-D4F** 12W power module is a robust broadband 2-stage Class A/AB amplifier, suitable for use as a power amplifier driver or output stage. The power transistors are fabricated using Sirenza's latest, high performance LDMOS process. It is a drop-in, notune, solution for high power applications requiring high efficiency, excellent linearity, and unit-to-unit repeatability. Internal bias current compensation ensures stable performance over a wide temperature range. It is internally matched to 50 ohms.

Functional Block Diagram

Key Specifications



Case Flange = Ground

XD010-04S-D4F XD010-04S-D4FY

350-600 MHz Class AB 12W Power Amplifier Module

Product Features

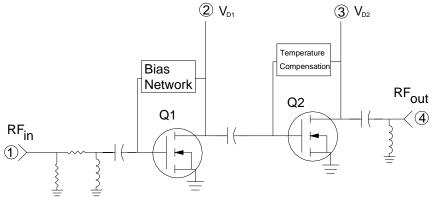
- Available in RoHS compliant packaging
- 50 Ω RF impedance
- 12W Output P_{1dB}
- Single Supply Operation : Nominally 28V
- High Gain: 32 dB at 450 MHz
- High Efficiency: 30% at 450 MHz
- Robust 8000V ESD (HBM), Class 3B
- XeMOS II LDMOS FETS
- Temperature Compensation

Applications

- DTV
- Public Service
- Wireless Infrastructure
- Military Communications

Symbol	Parameter	Unit	Min.	Тур.	Max.
Frequency	Frequency of Operation	MHz	350	-	600
P _{1dB}	Output Power at 1dB Compression, 450MHz	W	-	12	-
Gain	Gain at 10W Output Power, 450MHz	dB	30	32	-
Gain Flatness	Peak to Peak Gain Variation, 350 - 600MHz	dB	-	1.0	2.0
IRL	Input Return Loss 1W Output Power, 350 - 600MHz	dB	10	15	-
Efficiency	Drain Efficiency at 10W CW, 350-600MHz	%	26	30	-
Linearity	3 rd Order IMD at 10W PEP (Two Tone), 450MHz & 451MHz	dBc	-	-32	-28
Delay	Signal Delay from Pin 1 to Pin 4	nS	-	2.5	-
Phase Linearity	Deviation from Linear Phase (Peak to Peak)	Deg	-	0.5	-
Frequency	Frequency of Operation	MHz	350	-	600
R _{TH, j-I}	Thermal Resistance Stage 1 (Junction-to-Case)	°C/W		11	
R _{TH, j-2}	Thermal Resistance Stage 2 (Junction-to-Case)	°C/W		4	
	_{it} = 50Ω, V _{DD} = 28.0V, I _{DQ1} = 230 mA, I _{DQ2} =150 mA, T _{Flange} = 25%	С			

1625-1675The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any thrid party. Sirenza Microdevices and/or systems. Copyright 2003 Sirenza Microdevices, Inc. All worldwide rights reserved. 303 S. Technology Court, Broomfield, CO 80021 1 EDS-104259 Rev E


Quality Specifications

Parameter		Unit	Typical
ESD Rating	Human Body Model, JEDEC Document - JESD22-A114-B	V	8000
MTTF	85°C Leadframe, 200°C Channel	Hours	1.2 X 10 ⁶

Pin Description

Pin #	Function	Description		
1	RF Input	Module RF input. This pin is internally connected to DC ground. Do not apply DC voltages to the RF leads. Care must be taken to protect against video transients that may damage the active devices.		
2	V _{D1}	This is the drain voltage for the first stage. Nominally +28Vdc		
3	V _{D2}	This is the drain voltage for the 2 nd stage of the amplifier module. The 2 nd stage gate bias is temperature compensated to maintain constant quiscent drain current over the operating temperature range. See Note 1.		
4	RF Output	Module RF output. This pin is internally connected to DC ground. Do not apply DC voltages to the RF leads. Care must be taken to protect against video transients that may damage the active devices.		
Flange	Gnd	Exposed area on the bottom side of the package needs to be mechanically attached to the ground plane of the board for optimum thermal and RF performance. See mounting instructions in application note AN-060 on Sirenza's web site.		

Simplified Device Schematic

Case Flange = Ground

Absolute Maximum Ratings

Parameters	Value	Unit
1 st Stage Bias Voltage (V _{D1})	35	V
2 nd Stage Bias Voltage (V _{D2})	35	V
RF Input Power +20 dE		dBm
Load Impedance for Continuous Operation With- out Damage 5:1		VSWR
Output Device Channel Temperature	+200	°C
Operating Temperature Range	-20 to +90	°C
Storage Temperature Range	-40 to +100	°C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation see typical setup values specified in the table on page one.

Note 1:

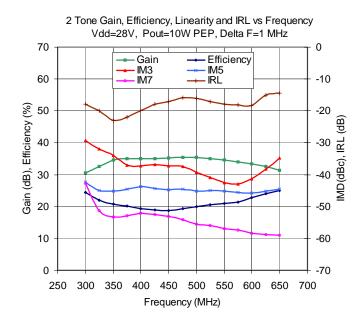
The internally generated gate voltage is thermally compensated to maintain constant quiescent current over the temperature range listed in the data sheet. No compensation is provided for gain changes with temperature. This can only be accomplished with AGC external to the module.

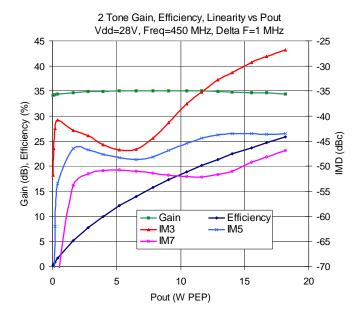
Note 2:

Internal RF decoupling is included on all bias leads. No additional bypass elements are required, however some applications may require energy storage on the drain leads to accommodate time-varying waveforms.

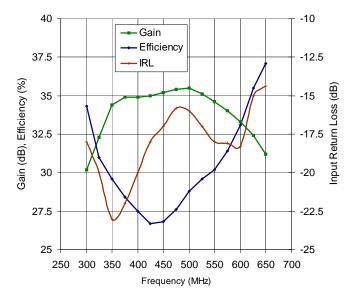
Note 3:

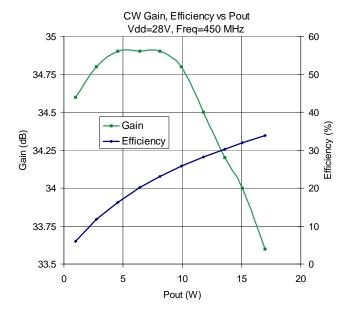
This module was designed to have its leads hand soldered to an adjacent PCB. The maximum soldering iron tip temperature should not exceed 700° F, and the soldering iron tip should not be in direct contact with the lead for longer than 10 seconds. Refer to app note AN060 (www.sirenza.com) for further installation instructions.


Caution: ESD Sensitive

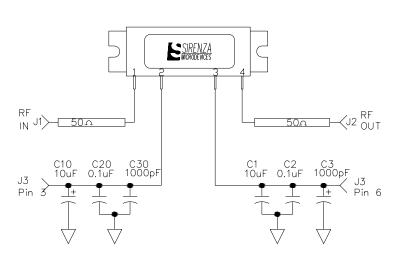

Appropriate precaution in handling, packaging and testing devices must be observed.

303 S. Technology Court Broomfield, CO 80021 Phone: (800) SMI-MMIC 2

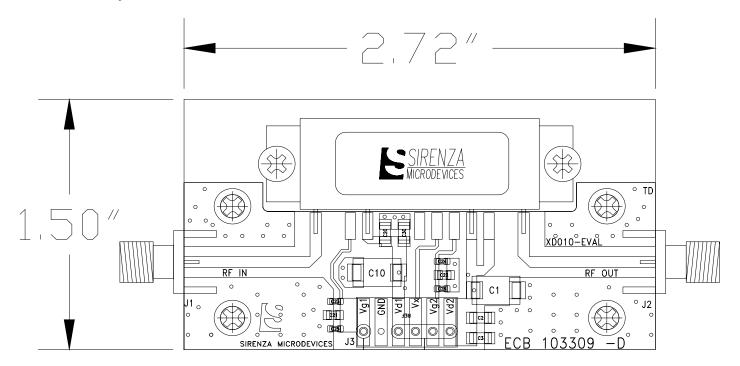



Typical Performance Curves

CW Gain, Efficiency, IRL vs Frequency Vdd=28V, Pout=10W



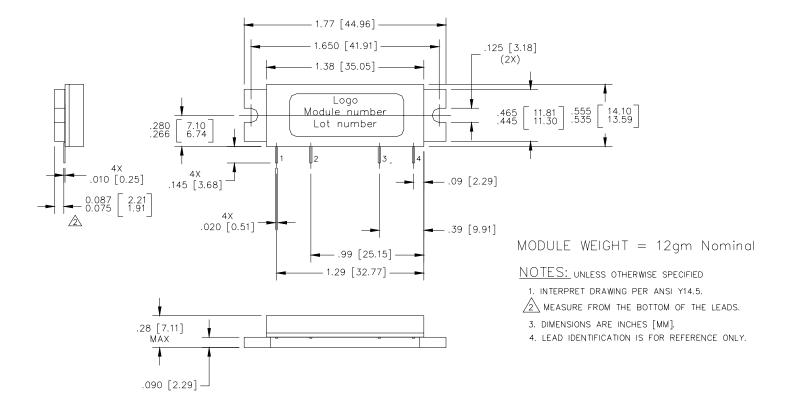
303 S. Technology Court Broomfield, CO 80021


Test Board Schematic with module connections shown

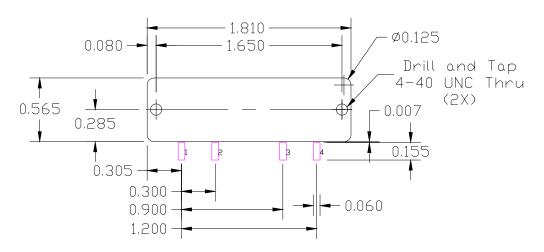
Test Board	Bill of	Materials
-------------------	---------	-----------

Component	Description	Manufacturer
PCB	Rogers 4350, <i>ε</i> _r =3.5 Thickness=30mils	Rogers
J1, J2	SMA, RF, Panel Mount Tab W / Flange	Johnson
J3	MTA Post Header, 6 Pin, Rect- angle, Polarized, Surface Mount	AMP
C1, C10	Cap, 10 μ F, 35V, 10%, Tant, Elect, D	Kemet
C2, C20	Cap, 0.1 μ F, 100V, 10%, 1206	Johanson
C3, C30	Cap, 1000pF, 100V, 10%, 1206	Johanson
C25, C26	Cap, 68pF, 250V, 5%, 0603	ATC
C21, C22	Cap, 0.1 μ F, 100V, 10%, 0805	Panasonic
C23, C24	Cap, 1000pF, 100V, 10%, 0603	AVX
Mounting Screws	4-40 X 0.250"	Various

Test Board Layout



To receive Gerber files, DXF drawings, a detailed BOM, and assembly recommendations for the test board with fixture, contact applications support at support@sirenza.com. Data sheet for evaluation circuit (XD010-EVAL) available from Sirenza website.


303 S. Technology Court Broomfield, CO 80021 Phone: (800) SMI-MMIC 4

Package Outline Drawing

Recommended PCB Cutout and Landing Pads for the D4F Package

Note 3: Dimensions are in inches

Refer to Application note AN-060 "Installation Instructions for XD Module Series" for additional mounting info. App note available at at www.sirenza.com

303 S. Technology Court Broomfield, CO 80021

Phone: (800) SMI-MMIC 5