

Dual Channel High CMR High Speed Hermetically Sealed Optocouplers

Technical Data

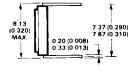
6N134 6N134/883B 8102801EX

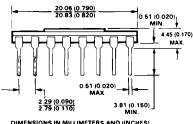
Features

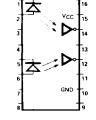
- Dual Marked with DESC Standard Military Drawing
- Manufactured and Tested on a MIL-STD-1772 Certified Line
- QML-MIL-H-38534, Class H
- Hermetically Sealed 16-pin Dual In-Line Package
- Performance Guaranteed Over -55°C to +125°C
- MIL-H-38534 Class H
- Internal Shield for Higher CMR; Selections Available
- 1500 Vdc Withstand Test Voltage
- High Radiation Immunity
- HCPL-2631, -56XX, -66XX **Function Compatibility**
- Reliability Data Available
- Space Level Processing
- Available with TXV or TXVB Part Marking

Description

Available


The 6N134, 6N134/883B, and 8102801EC units are hermetically sealed, high CMR, high speed optocouplers. The products are capable of operation and storage over the full military temperature range and


can be purchased as either a standard product (6N134), with full MIL-H-38534 Class Level H testing (6N134/883B) or from the DESC Drawing 81028 as (8102801EX). All three products are dual channel in sixteen pin hermetic dual in-line packages. These parts are normally shipped with gold plated leads. They are also available with solder dipped leads by replacing C with A in the DESC part #, or by adding option #200 to the part number for 883B marked parts.


light emitting diode which is optically coupled to an integrated high speed photon detector. The output of the detector is an open collector Schottky clamped transistor. Internal shields provide a guaranteed common mode transient immunity specification of 1000 V/us. Selection for higher CMR values are available by special request.

Each channel contains a GaAsP

Outline Drawing

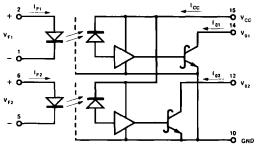
DIMENSIONS IN MILLIMETERS AND (INCHES)

For Gull-wing or Butt-joint lead form options, contact your local Hewlett-Packard field representative.

This unique optocoupler design provides maximum dc and ac circuit isolation between each input and output while achieving TTL circuit compatibility. These optocouplers operate such that a minimum input current of 10 mA in each channel will sink a six gate fanout (10 mA) at the output with 4.5 to 5.5 V $V_{\rm cc}$ applied to the detector. This isolation and coupling is achieved with a typical propagation delay of 55 nsec.

The test program performed on the 8102801EX is in compliance with DESC Drawing 81028. The electrical characteristics table shows Group A Subgroup testing requirements from this drawing.

All devices are manufactured and tested on a MIL-STD-1772


certified line and are included in the DESC Qualified Manufacturers List (QML) in accordance with requirements for MIL-H-38534.

Applications

• Military/High Reliability Systems

Schematic

- Transportation and Life Critical Systems
- Logic Ground Isolation
- Line Receiver
- Computer-Peripheral Interface
- Vehicle Command/Control Isolation
- Harsh Industrial Environments
- System Test Equipment Isolation

NOTE: A 0.01 TO 0.1 μF BYPASS CAPACITOR MUST BE CONNECTED BETWEEN PINS 15 AND 10.

Absolute Maximum Ratings

+150°C
+125°C
+260°C
+175°C
ration)
.20 mA
35 mW
5 V
e max.)
25 mA
40 mW
7 V*
50 mW

^{*}Selection for higher output voltages up to 20 V is available.

Recommended Operating Conditions

Parameter	Symbol	Minimum	Maximum	Units
Input Current, Low Level, Each Channel	I _{FL}	0	250	μА
Input Current, High Level, Each Channel	I _{FH}	12.5*	16	mA
Supply Voltage	v_{cc}	4.5	5.5	v
Fan Out (@ $R_L = 4 k\Omega$), Each Channel	N		5	TTL Loads
Operating Temperature	TA	-55	125	°C

^{*12.5} mA condition permits at least 20% CTR degradation guardband. Initial switching threshold is 10 mA or less.

Electrical Specifications

		Group A Limits							
Test	Symbol	Conditions	Sub- groups ⁽¹¹⁾	Min.	Тур.**	Max.	Unit	Fig.	Note
Low Level Output Voltage	V _{ol.} *	$V_{cc} = 5.5 \text{ V}; I_F \approx 10 \text{ mA}$ $I_{oL} = 10 \text{ mA}$	1, 2, 3	_	0.4	0.6	v	4	1, 9
Current Transfer Ratio	h, CTR	$V_o = 0.6 \text{ V}; I_p = 10 \text{ mA}$ $V_{oc} = 5.5 \text{ V}$	1, 2, 3	100		+	%		1
High Level Output Current	I _{0H} *	$V_{cc} = 5.5 \text{ V}; V_{o} = 5.5 \text{ V}$ $I_{p} = 250 \mu\text{A}$	1, 2, 3	_	5	250	μA dc		1
High Level Supply Current	I _{cch} *	$V_{cc} = 5.5 \text{ V}; I_{p_1} = I_{p_2} = 0 \text{ mA}$	1, 2, 3		18	28	mA dc		
Low Level Supply Current	I _{ccl} *	$V_{cc} = 5.5 \text{ V}; I_{P1} = I_{P2} = 20 \text{ mA}$	1, 2, 3	-	26	36	mA dc		
			1, 2	-	1.55	1.75		1	1
Input Forward Voltage	V _F *	I _F = 20 mA	3	-		1.85	V dc		
Input Reverse Breakdown Voltage	V _{BR} *	I _R = 10 μA	1, 2, 3	5.0		_	V dc		1
Input to Output Insulation Leakage Current	I _{I.O} *	V ₁₀ = 1500 V dc Relative Humidity = 45% t = 5 seconds	1	-		1.0	μ A dc		2, 10
Capacitance Between Input/Output	C ^{t-o}	$f = 1 \text{ MHz}; T_c = 25^{\circ}\text{C}$	4	-		4.0	pF		3
Propagation Delay			9	-		100			
Time, Low to High Output Level	t _{PLH} *	$R_L = 510 \Omega; C_L = 50 pF$ $I_p = 13 mA$	10, 11	-		140	ns	2,3	1, 5
Propagation Delay			9	-		100			
Time, High to Low Output Level	t _{PHL} *	$R_L = 510 \Omega; C_L = 50 \text{ pF}$ $I_P = 13 \text{ mA}$	10, 11	-		120	ns	2, 3	1,6
Output Rise Time	t _{LH}	$R_L = 510 \Omega$		-		90			
Output Fall Time	t _{HL}	$C_L = 50 \text{ pF};$ $I_F = 13 \text{ mA}$	9, 10, 11	-		40	ns		
Common Mode Transient Immunity at High Output Level	CM _H	$\begin{aligned} &V_{\text{CM}} = 50 \text{ V (peak);} \\ &V_{\text{O}} = 2 \text{ V minimum;} \\ &R_{\text{L}} = 510 \ \Omega; \\ &I_{\text{p}} = 0 \text{ mA} \end{aligned}$	9, 10, 11	1000	10000	-	Vμs	6	1, 7, 11, 12
Common Mode Transient Immunity at Low Output Level	ICM _L I	$V_{cM} = 50 \text{ V (peak)};$ $V_{o} = 0.8 \text{ V max}.$ $R_{L} = 510 \Omega;$ $I_{V} = 10 \text{ mA}$	9, 10, 11	1000	10000	_	Vμs	6	1, 8, 11, 12

^{*}For JEDEC registered parts. **All typical values are at V $_{\rm cc}$ = 5 V, T $_{\rm A}$ = 25 °C.

Typical Specifications $T_A = 25^{\circ}\text{C}$), $V_{CC} = 5 \text{ V}$ each channel

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Fig.	Note
Input Capacitance	C _{IN}		60		pF	$V_{\rm F} = 0$, $f = 1$ MHz		1
Input Diode Temperature Coefficient	$\frac{\Delta V_F}{\Delta T_A}$		-1.5		mV/°C	I _F = 20 mA		1
Resistance (Input-Output)	R _{I-O}		1012		Ω	V _{I-O} = 500 V		3
Input-Input Leakage Current	I		0.5		nA	Relative Humidity = 45% V _{I,I} = 500 V, t = 5 s		4
Resistance (Input-Input)	R _{I.I}		1012		Ω	$V_{I-I} = 500 \text{ V}$		4
Capacitance (Input-Input)	$\mathbf{C}_{\mathbf{I}\cdot\mathbf{I}}$		0.55		pF	f = 1 MHz		4
Output Rise Time (10-90%)	t,		35		ns	$R_L = 510 \Omega, C_L = 15 pF$		1
Output Fall Time (90-10%)	t _r		35		ns	$I_p = 13 \text{ mA}$		1

Notes:

- 1. Each channel.
- 2. Measured between pins 1 through 8 shorted together and pins 9 through 16 shorted together.
- 3. Measured between pins 1 and 2 or 5 and 6 shorted together, and pins 10, 12, 14 and 15 shorted together.
- 4. Measured between pins 1 and 2 shorted together, and pins 5 and 6 shorted together.
- The t_{PLH} propagation delay is measured form the 6.5 mA point on the trailing edge of the input pulse to the 1.5 V point on the trailing edge of the output pulse.
- 6. The $t_{\rm PH}$ propagation delay is measured from the 6.5 mA point on the leading edge of the input pulse to the 1.5 V point on the leading edge of the output pulse.
- 7. CM, is the max, tolerable common mode transient to assure that the output will remain in a high logic state (i.e., $V_0 > 2.0$ V).
- 8. CM, is the max, tolerable common mode transient to assure that the output will remain in a low logic state (i.e., Vo < 0.8 V).
- It is essential that a bypass capacitor (0.1 μF, ceramic) be connected from pin 10 to pin 15. Total lead length between both
 ends of the capacitor and the isolator pins should not exceed 20 mm.
- 10. This is a momentary withstand test, not an operating condition.
- 11. Standard parts receive 100% testing at 25°C (Subgroups 1 and 9). SMD and /883B parts receive 100% testing at 25, 125, and -55°C (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).
- 12. Subgroups 10 and 11 shall be tested as part of device initial characterization and after design and process changes. Subgroups 10 and 11 shall be guaranteed to the limits specified in table I for all lots not specifically tested. Subgroup 9 shall be tested with every lot.

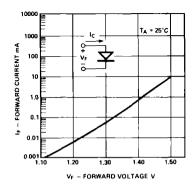
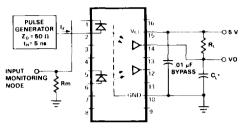



Figure 1. Input Diode Forward Current vs. Forward Voltage

*C, INCLUDES PROBE AND STRAY WIRING CAPACITANCE.

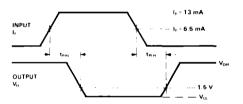
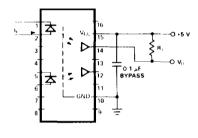



Figure 2. Test Circuit for t_{PRL} and t_{PLH}^*

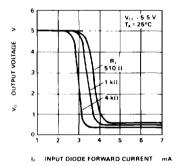


Figure 4. Input-Output Characteristics

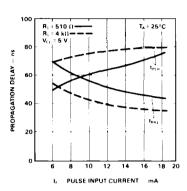


Figure 3. Propagation Delay, $t_{_{\rm PBL}}$ and $t_{_{\rm PLH}}$ vs. Pulse Input Current, $I_{_{\rm PH}}$

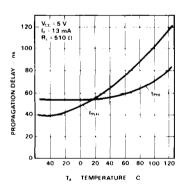
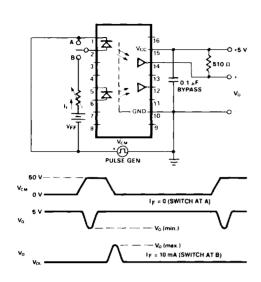



Figure 5. Propagation Delay vs. Temperature

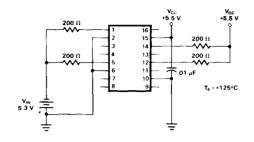


Figure 7. Operating Circuit for Burn-In and Steady State Life Tests

Figure 6. Typical Common Mode Rejection Characteristics/Circuit

8102801EC and MIL-H-38534 Class H Test Program

Hewlett-Packard's Hi-Rel Optocouplers are in compliance with MIL-H-38534 and DESC drawing 81028.

Testing consists of 100% screening and quality conformance to MIL-H-38534.

Part Numbering System

Commercial	Class H	DESC	Class K
Product	Product	Product	Product
6N134	6N134/883B	8102801EX	ТВА

Part Marking Orientation for 6N134 Base Product and Related DESC Product

^{*&}quot;X" is not marked on device. Replace "X" with "C" for gold leads; replace "X" with "A" for solder dipped leads.