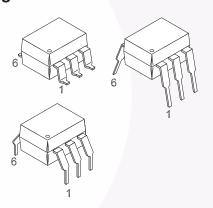


June 2009

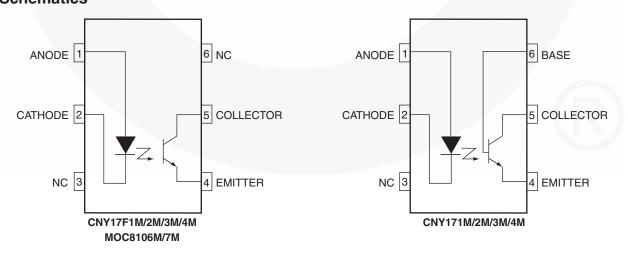
CNY171M, CNY172M, CNY173M, CNY174M, CNY17F1M, CNY17F2M, CNY17F3M, CNY17F4M, MOC8106M, MOC8107M Phototransistor Optocouplers

Features

- UL recognized (File # E90700, Vol. 2)
- VDE recognized
- Add option V (e.g., CNY17F2VM)
 - File #102497
- Current transfer ratio in select groups
- High BV_{CEO}: 70V minimum (CNY17XM, CNY17FXM, MOC810XM)
- Closely matched current transfer ratio (CTR) minimizes unit-to-unit variation.
- Very low coupled capacitance along with no chip to pin 6 base connection for minimum noise susceptability (CNY17FXM, MOC810XM)


Applications

- Power supply regulators
- Digital logic inputs
- Microprocessor inputs
- Appliance sensor systems
- Industrial controls


Description

The CNY17XM, CNY17FXM and MOC810XM devices consist of a Gallium Arsenide IRED coupled with an NPN phototransistor in a dual in-line package.

Package Outlines

Schematics

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Value	Units
TOTAL DE	VICE		ı
T _{STG}	Storage Temperature	-40 to +150	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
T _{SOL}	Lead Solder Temperature	260 for 10 sec	°C
P _D	Total Device Power Dissipation @ 25°C (LED plus detector)	250	mW
	Derate Linearly From 25°C	2.94	mW/°C
EMITTER			
I _F	Continuous Forward Current	60	mA
V _R	Reverse Voltage	6	V
I _F (pk)	Forward Current – Peak (1µs pulse, 300pps)	1.5	Α
P _D	LED Power Dissipation 25°C Ambient	120	mW
	Derate Linearly From 25°C	1.41	mW/°C
DETECTO	R		
I _C	Continuous Collector Current	50	mA
V _{CEO}	Collector-Emitter Voltage	70	V
V _{ECO}	Emitter Collector Voltage	7	V
P _D	Detector Power Dissipation @ 25°C	150	mW
	Derate Linearly from 25°C	1.76	mW/°C

Electrical Characteristics (T_A = 25°C Unless otherwise specified.)⁽¹⁾

Individual Component Characteristics

Symbol	Parameters	Test Conditions	Device	Min.	Тур.	Max.	Units
EMITTER							
V _F	Input Forward Voltage	I _F = 60mA	CNY17XM, CNY17FXM	1.0	1.35	1.65	V
		I _F = 10mA	MOC810XM	1.0	1.15	1.50	
CJ	Capacitance	$V_F = 0 V, f = 1.0MHz$	All		18		pF
I _R	Reverse Leakage Current	V _R = 6V	All		0.001	10	μA
DETECTO	OR .			•			
BV _{CEO}	Breakdown Voltage Collector to Emitter	I _C = 1.0mA, I _F = 0	All	70	100		V
BV _{CBO}	Collector to Base	$I_C = 10\mu A, I_F = 0$	CNY171M/2M/3M/4M	70	120		
BV _{ECO}	Emitter to Collector	$I_E = 100 \mu A, I_F = 0$	All	7	10		
I _{CEO}	Leakage Current Collector to Emitter	V _{CE} = 10 V, I _F = 0	All		1	50	nA
I _{CBO}	Collector to Base	V _{CB} = 10 V, I _F = 0	CNY171M/2M/3M/4M			20	nA
C _{CE}	Capacitance Collector to Emitter	V _{CE} = 0, f = 1MHz	All		8		pF
C _{CB}	Collector to Base	$V_{CB} = 0$, $f = 1MHz$	CNY171M/2M/3M/4M		20		pF
C _{EB}	Emitter to Base	V _{EB} = 0, f = 1MHz	CNY171M/2M/3M/4M		10		pF

Isolation Characteristics

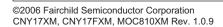
Symbol	Characteristic	Test Conditions	Min.	Тур.*	Max.	Units
V _{ISO}	Input-Output Isolation Voltage	f = 60 Hz, t = 1 sec., $I_{I-O} \le 2\mu A^{(4)}$	7500			Vac(pk)
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 VDC^{(4)}$	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = \emptyset$, f = 1MHz ⁽⁴⁾		0.2		pF

Transfer Characteristics ($T_A = 25^{\circ}C$ Unless otherwise specified.)⁽³⁾

Symbol	DC Characteristics		Test Conditions	Min.	Тур.*	Max.	Units
COUPLE	D						
(CTR) ⁽²⁾	Output Collector	MOC8106M	I _F = 10mA, V _{CE} = 10V	50		150	%
	Current	MOC8107M		100	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	300	
		CNY17F1M	I _F = 10mA, V _{CE} = 5V	40		80	
		CNY17F2M		63		125	
	CNY17F3M		100		200		
		CNY17F4M		160		320	
		CNY171M		40		80	
		CNY172M		63		125	
		CNY173M		100		200	
		CNY174M		160		320	
V _{CE(sat)}	Collector-Emitter	CNY17XM/FXM	I _C = 2.5mA, I _F = 10mA			0.4	V
	Saturation Voltage	MOC8106M/7M	$I_C = 500\mu A, I_F = 5.0mA$				

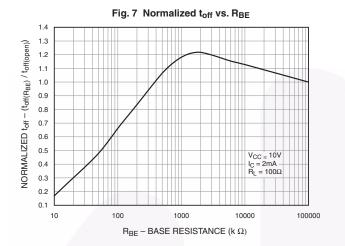
^{*}All typicals at $T_A = 25$ °C

Electrical Characteristics (Continued) (T_A = 25°C Unless otherwise specified.)⁽¹⁾


Transfer Characteristics (Continued)⁽³⁾

Symbol	AC Characteristics ⁽⁴⁾		Test Conditions	Min.	Тур.*	Max.	Units
NON-SAT	URATED SWITC	HING TIME					
t _{on}	Turn-On Time	All Devices	$I_C = 2.0$ mA, $V_{CC} = 10$ V, $R_L = 100\Omega$		2	10	μs
t _{off}	Turn-Off Time	All Devices	$I_C = 2.0 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$		3	10	μs
t _d	Delay Time	CNY17XM/XFM	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}, R_L = 75 \Omega$			5.6	μs
t _r	Rise Time	All Devices	$I_C = 2.0 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$		1		μs
		CNY17XM/FXM	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}, R_L = 75 \Omega$			4.0	
t _s	Storage Time	CNY17XM/FXM	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}, R_L = 75 \Omega$			4.1	μs
t _f	Fall Time	All Devices	$I_C = 2.0 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$		2		μs
		CNY17XM/FXM	$I_F = 10 \text{mA}, V_{CC} = 5 \text{V}, R_L = 75 \Omega$			3.5	
SATURA	TED SWITCHING	TIMES		'			
t _{on}	Turn-on Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			5.5	μs
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10\text{mA}, V_{CC} = 5\text{V}, R_L = 1\text{k}\Omega$			8.0	
t _r	Rise Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			4.0	μs
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω	V.		6.0	
t _d	Delay Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			5.5	μs
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			8.0	
t _{off}	Turn-off Time	CNY171M/F1M	I _F = 20mA, V _{CE} = 0.4V			34	μs
		CNY172M/3M/4M CNY17F2M/F3M/F4M	I _F = 10mA, V _{CE} = 0.4V			39	
t _f	Fall Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			20.0	μs
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			24.0	
t _s	Storage Time	CNY171M/F1M	$I_F = 20$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			34.0	μs
		CNY172M/3M/4M CNY17F2M/F3M/F4M	$I_F = 10$ mA, $V_{CC} = 5$ V, $R_L = 1$ k Ω			39.0	

^{*}All typicals at T_A = 25°C


Notes:

- 1. Always design to the specified minimum/maximum electrical limits (where applicable).
- 2. Current Transfer Ratio (CTR) = $I_C/I_F \times 100\%$.
- 3. For test circuit setup and waveforms, refer to Figures 10 and 11.
- 4. For this test, Pins 1 and 2 are common, and Pins 4 are 5 are common.

Typical Performance Characteristics Fig. 2 Normalized CTR vs. Ambient Temperature Fig. 1 Normalized CTR vs. Forward Current 1.2 1.4 I= = 5mA 1.2 I_F = 10mA 1.0 NORMALIZED CTR NORMALIZED CTR 0.8 0.8 0.6 $I_F = 20mA$ 0.6 0.4 0.2 Normalized to: $I_F = 10mA$ $T_A = 25$ °C 0.2 -60 0.0 0 10 12 18 20 IF - FORWARD CURRENT (mA) T_A – AMBIENT TEMPERATURE (°C) Fig. 3 CTR vs. RBE (Unsaturated) Fig. 4 CTR vs. RBE (Saturated) 1.0 NORMALIZED CTR (CTRRBE / CTRRBE(OPEN)) 1.0 NORMALIZED CTR (CTR_{RBE} / CTR_{RBE}(OPEN)) 0.9 0.9 I_F = 20mA 0.8 0.8 I_F = 10m/ $V_{CE} = 0.3V$ 0.7 0.7 0.6 0.6 0.5 0.5 I= = 10mA 0.4 0.4 0.3 0.3 0.2 0.2 $V_{CE} = 5.0V$ 0.1 0.1 0.0 10 100 1000 10 100 1000 R_{BE} – BASE RESISTANCE ($k\Omega$) R_{BE} – BASE RESISTANCE ($k\Omega$) Fig. 5 Switching Speed vs. Load Resistor 1000 Fig. 6 Normalized ton vs. R_{BE} I_F = 10mA V_{CC} = 10V T_A = 25°C 5.0 V_{CC} = 10V I_C = 2mA $\mathsf{NORMALIZED}\ t_{\mathsf{on}} - \left(t_{\mathsf{On}(\mathsf{RBE})}\ /\ t_{\mathsf{on}(\mathsf{open})}\right)$ $I_C = 2mA$ $R_L = 100\Omega$ 100 SWITCHING SPEED (µs) 3.5 3.0 10 2.5 2.0 1.5 1.0 0.5 L 10 1000 10000 100000 0.1 R_{BE} – BASE RESISTANCE ($k\Omega$) 0.1 R – LOAD RESISTOR ($k\Omega$)

Typical Performance Characteristics (Continued)

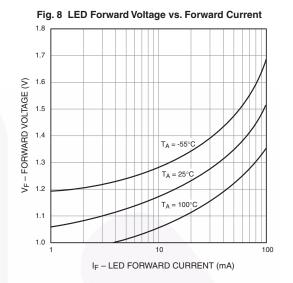
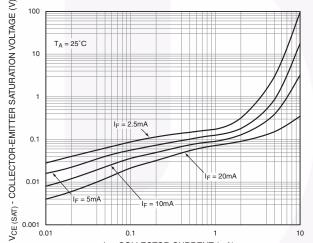
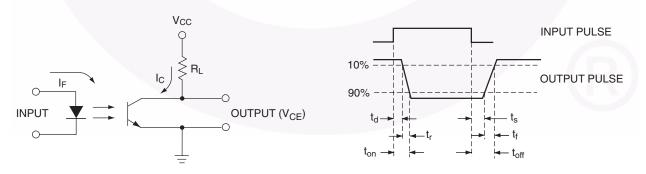
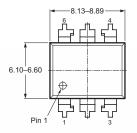
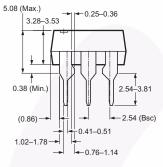
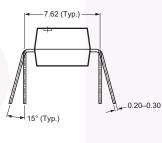



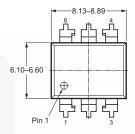
Fig. 9 Collector-Emitter Saturation Voltage vs Collector Current V_{CE (SAT)} - COLLECTOR-EMITTER SATURATION VOLTAGE (V) 10 0.1 = 20mA 0.01 I_C - COLLECTOR CURRENT (mA)

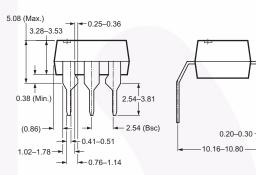



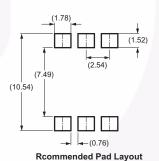

Figure 10. Switching Time Test Circuit

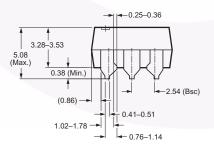

Figure 11. Switching Time Waveforms

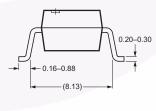
Package Dimensions


Through Hole

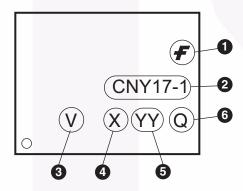



0.4" Lead Spacing



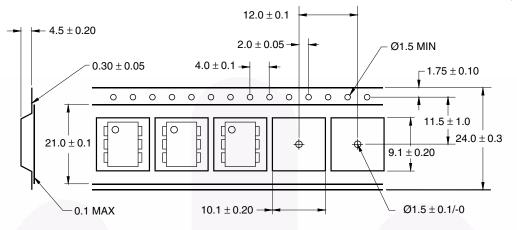


Surface Mount

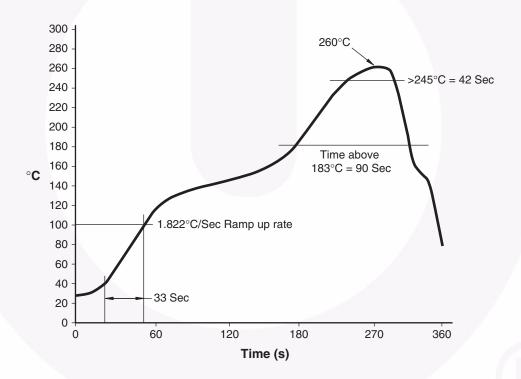


Note: All dimensions in mm.

Ordering Information


Option	Order Entry Identifier (Example)	Description
No option	CNY171M	Standard Through Hole Device
S	CNY171SM	Surface Mount Lead Bend
SR2	CNY171SR2M	Surface Mount; Tape and Reel
Т	CNY171TM	0.4" Lead Spacing
V	CNY171VM	IEC60747-5-2
TV	CNY171TVM	IEC60747-5-2, 0.4" Lead Spacing
SV	CNY171SVM	IEC60747-5-2, Surface Mount
SR2V	CNY171SR2VM	IEC60747-5-2, Surface Mount, Tape and Reel

Marking Information


Definitions					
1	Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	One digit year code, e.g., '7'				
5	Two digit work week ranging from '01' to '53'				
6	Assembly package code				

Carrier Tape Specification

User Direction of Feed -----

Reflow Profile

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ Build it Now™ CorePLUS™

CorePOWER™ Green FPS™ CROSSVOLT™ Green FPS™ e-Series™ CTL™ Gmax™

Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™*

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT['] FAST® FastvCore™ FETBench™

FlashWriter® **FPSTM**

F-PFS™ FRFET®

Global Power Resource SM

GTO™ IntelliMAX™ ISOPLANAR™

MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™

MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™ QFĔT

QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SmartMax™

SMART START™ STEALTH™ SuperFFT™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™

Sync-Lock™ SYSTEM ® The Power Franchise®

⊍wer franchise TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinvPower™ TinyPWM™ TinyWire™ TriFault Detect™

TRUECURRENT™* μSerDes™

UHC Ultra FRFET™ UniFET™ VCX™ VisualMax™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 140