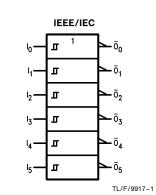
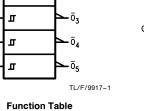
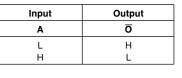
National Semiconductor

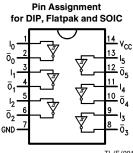
54AC/74AC14 Hex Inverter with Schmitt Trigger Input

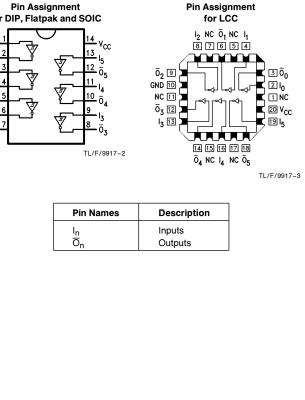
General Description


The 'AC14 contains six inverter gates each with a Schmitt trigger input. The 'AC14 contains six logic inverters which accept standard CMOS input signals and provide standard CMOS output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.


The 'AC14 has hysteresis between the positive-going and negative-going input thresholds (typically 1.0V) which is determined internally by transistor ratios and is essentially insensitive to temperature and supply voltage variations.


Features


- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- Standard Military Drawing (SMD)
 - 'AC14: 5962-87624



Connection Diagrams

© 1995 National Semiconductor Corporation TL/F/9917

FACT™ is a trademark of National Semiconductor Corporation.

RRD-B30M75/Printed in U. S. A.

June 1993

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to $+7.0V$
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	-20 mA
$V_{I} = V_{CC} + 0.5V$	+ 20 mA
DC Input Voltage (VI)	$-0.5 V$ to $V_{\mbox{CC}}$ $+$ 0.5 V
DC Output Diode Current (IOK)	
$V_{O} = -0.5V$	-20 mA
$V_{O} = V_{CC} + 0.5V$	+ 20 mA
DC Output Voltage (V _O)	$-0.5 V$ to $V_{\mbox{CC}}$ $+$ 0.5 V
DC Output Source	
or Sink Current (I _O)	\pm 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	± 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
CDIP	175°C
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (Vcc)

Supply Voltage (V _{CC})	
'AC	2.0V to 6.0V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	
74AC	-40°C to +85°C
54AC	-55°C to +125°C

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation of FACT™ circuits outside databook specifications.

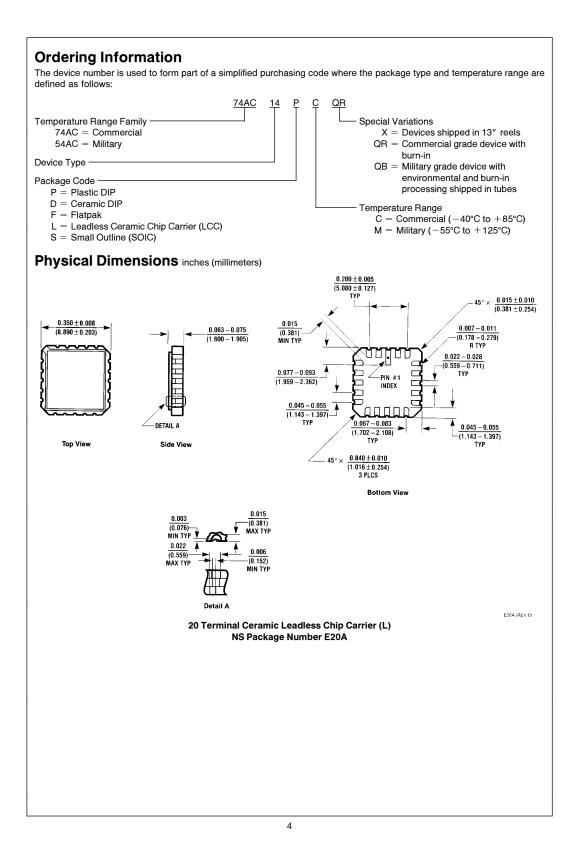
DC Characteristics for 'AC Family Devices

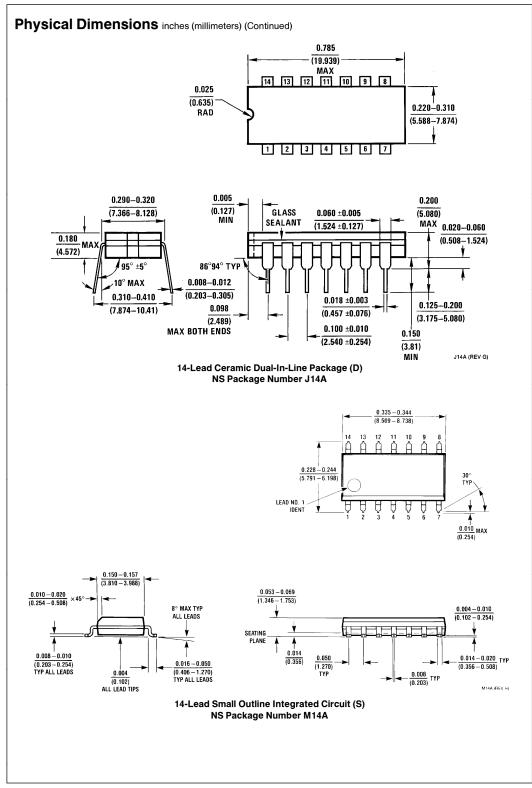
Symbol Parame			74AC		54AC	74AC	Units	Conditions
	Parameter	$ \begin{array}{c c} V_{CC} \\ (V) \end{array} T_{A} = \ + 25^{\circ} C \end{array} $		+25°C	T _A = −55°C to +125°C	T _A = −40°C to +85°C		
			Тур		Guaranteed Li	mits		
V _{OH}	Minimum High Level	3.0	2.99	2.9	2.9	2.9		$I_{OUT} = -50 \ \mu A$
	Output Voltage	4.5	4.49	4.4	4.4	4.4	V	
		5.5	5.49	5.4	5.4	5.4		
								$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.4	2.46		— 12 mA
		4.5		3.86	3.7	3.76	V	I _{OH} – 24 mA
		5.5		4.86	4.7	4.76		—24 mA
V _{OL}	Maximum Low Level	3.0	0.002	0.1	0.1	0.1		l _{OUT} = 50 μA
	Output Voltage	4.5	0.001	0.1	0.1	0.1	V	
		5.5	0.001	0.1	0.1	0.1		
								$*V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.5	0.44		12 mA
		4.5		0.36	0.5	0.44	V	I _{OL} 24 mA
		5.5		0.36	0.5	0.44		24 mA
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	±1.0	μΑ	$V_I = V_{CC}$, GND
V_{t+}	Maximum Positive	3.0		2.2	2.2	2.2		T _A = Worst Case
	Threshold	4.5		3.2	3.2	3.2	V	
		5.5		3.9	3.9	3.9		
V_{t-}	Minimum Negative	3.0		0.5	0.5	0.5		T _A = Worst Case
	Threshold	4.5		0.9	0.9	0.9	V	
		5.5		1.1	1.1	1.1		

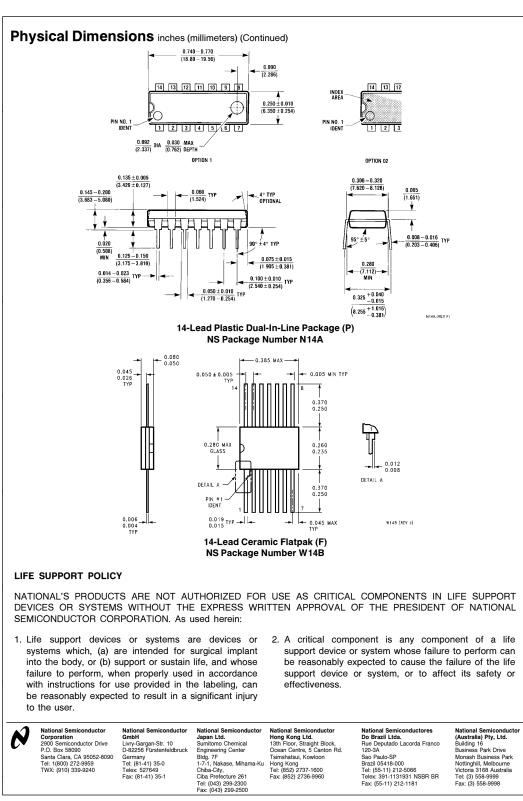
			74	AC	54AC	74AC					
Symbol	Parameter	V _{CC} (V)	$T_A = +25^{\circ}C$		$T_A = +25^{\circ}C$		T _A = −55°C to +125°C	T _A = −40°C to +85°C	Units	Conditions	
		Typ Guaranteed Limits									
V _{h(max)}	Maximum Hysteresis	3.0		1.2	1.2	1.2		T _A = Worst Case			
		4.5		1.4	1.4	1.4	V				
		5.5		1.6	1.6	1.6					
V _{h(min)}	Minimum Hysteresis	3.0		0.3	0.3	0.3		T _A = Worst Case			
		4.5		0.4	0.4	0.4	V				
		5.5		0.5	0.5	0.5					
I _{OLD}	†Minimum Dynamic	5.5			50	75	mA	V _{OLD} = 1.65V Max			
IOHD	Output Current	5.5			-50	-75	mA	$V_{OHD} = 3.85V$ Mir			
ICC	Maximum Quiescent Supply Current	5.5		2.0	40.0	20.0	μΑ	$V_{IN} = V_{CC}$ or GND			

†Maximum test duration 2.0 ms, one output loaded at a time.

Note: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}. I_{CC} for 54AC @ 25°C is identical to 74AC @ 25°C.


AC Electrical Characteristics


Symbol	Parameter	V _{CC} * (V)	74AC T _A = +25°C C _L = 50 pF		T _A = to +	AC 55°C 125°C 50 pF	T _A = to +	AC 40°C 85°C 50 pF	Units	
			Min	Тур	Max	Min	Мах	Min	Мах	
t _{PLH}	Propagation Delay	3.3 5.0	1.5 1.5	9.5 7.0	13.5 10.0	1.0 1.0	16.0 12.0	1.5 1.5	15.0 11.0	ns
t _{PHL}	Propagation Delay	3.3 5.0	1.5 1.5	7.5 6.0	11.5 8.5	1.0 1.5	14.0 10.0	1.5 1.5	13.0 9.5	ns


*Voltage Range 3.3 is 3.3V $\pm 0.3V$ Voltage Range 5.0 is 5.0V $\pm 0.5V$

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = OPEN$
C _{PD}	Power Dissipation Capacitance	25.0	pF	$V_{CC} = 5.0V$

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.