

79C940

Media Access Controller for Ethernet (MACE[™])

DISTINCTIVE CHARACTERISTICS

- Integrated Controller with Manchester encoder/decoder and 10BASE-T transceiver and AUI port
- Supports IEEE 802.3/ANSI 8802-3 and Ethernet standards
- 84-pin PLCC and 100-pin PQFP Packages
- 80-pin Thin Quad Flat Pack (TQFP) package available for space critical applications such as PCMCIA
- Modular architecture allows easy tuning to specific applications
- High speed, 16-bit synchronous host system interface with 2 or 3 cycles/transfer
- Individual transmit (136 byte) and receive (128 byte) FIFOs provide increase of system latency and support the following features:
 - Automatic retransmission with no FIFO reload
 - Automatic receive stripping and transmit padding (individually programmable)
 - Automatic runt packet rejection
 - Automatic deletion of collision frames
 - Automatic retransmission with no FIFO reload
- Direct slave access to all on board configuration/status registers and transmit/ receive FIFOs
- Direct FIFO read/write access for simple interface to DMA controllers or I/O processors

- Arbitrary byte alignment and little/big endian memory interface supported
- Internal/external loopback capabilities
- External Address Detection Interface (EADI[™]) for external hardware address filtering in bridge/router applications
- JTAG Boundary Scan (IEEE 1149.1) test access port interface for board level production test
- Integrated Manchester Encoder/Decoder
- Digital Attachment Interface (DAI[™]) allows by-passing of differential Attachment Unit Interface (AUI)
- Supports the following types of network interface:
 - AUI to external 10BASE2, 10BASE5 or 10BASE-F MAU
 - DAI port to external 10BASE2, 10BASE5, 10BASE-T, 10BASE-F MAU
 - General Purpose Serial Interface (GPSI) to external encoding/decoding scheme
 - Internal 10BASE-T transceiver with automatic selection of 10BASE-T or AUI port
- Sleep mode allows reduced power consumption for critical battery powered applications
- 5 MHz-25 MHz system clock speed
- Support for operation in industrial temperature range (-40°C to +85°C) available in all three packages

For complete Rochester ordering guide, please refer to page 3 Please consult factory for specific package availability

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.

GENERAL DESCRIPTION

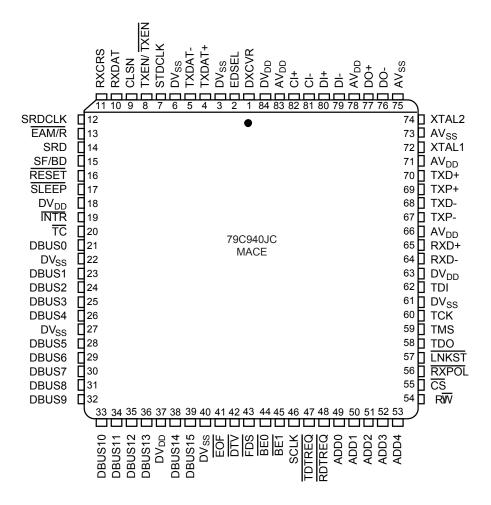
The Media Access Controller for Ethernet (MACE) chip is a CMOS VLSI device designed to provide flexibility in customized LAN design. The MACE device is specifically designed to address applications where multiple I/O peripherals are present, and a centralized or system specific DMA is required. The high speed, 16-bit synchronous system interface is optimized for an external DMA or I/O processor system, and is similar to many existing peripheral devices, such as SCSI and serial link controllers.

The MACE device is a slave register based peripheral. All transfers to and from the system are performed using simple memory or I/O read and write commands. In conjunction with a user defined DMA engine, the MACE chip provides an IEEE 802.3 interface tailored to a specific application. Its superior modular architecture and versatile system interface allow the MACE device to be configured as a stand-alone device or as a connectivity cell incorporated into a larger, integrated system.

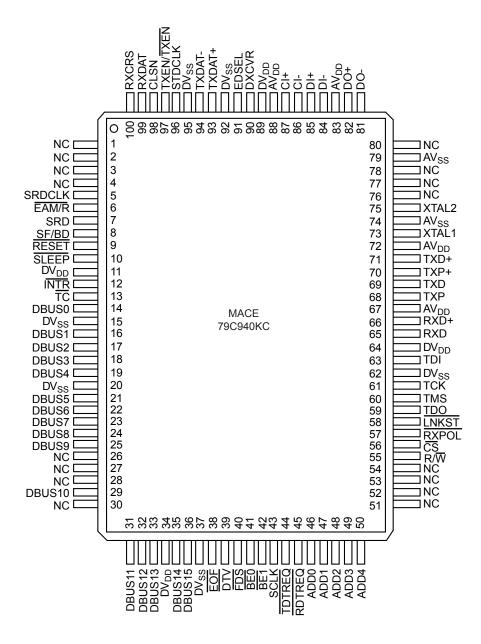
The MACE device provides a complete Ethernet node solution with an integrated 10BASE-T transceiver, and supports up to 25-MHz system clocks. The MACE device embodies the Media Access Control (MAC) and Physical Signaling (PLS) sub-layers of the IEEE 802.3 standard, and provides an IEEE defined Attachment Unit Interface (AUI) for coupling to an external Medium Attachment Unit (MAU). The MACE device is compliant with 10BASE2, 10BASE5, 10BASE-T, and 10BASE-F transceivers.

Additional features also enhance over-all system design. The individual transmit and receive FIFOs optimize system overhead, providing substantial latency during packet transmission and reception, and minimizing intervention during normal network error recovery. The integrated Manchester encoder/decoder eliminates the need for an external Serial Interface Adapter (SIA) in the node system. If support for an external encoding/decoding scheme is desired, the General Purpose Serial Interface (GPSI) allows direct access to/from the MAC. In addition, the Digital Attachment Interface (DAI), which is a simplified electrical attachment specification, allows implementation of MAUs that do not require DC isolation between the MAU and DTE. The DAI port can also be used to indicate transmit, receive, or collision status by connecting LEDs to the port. The MACE device also provides an External Address Detection Interface (EADI) to allow external hardware address filtering in internet working applications.

The 79C940 MACE chip is offered in a Plastic Leadless Chip Carrier (84-pin PLCC), a Plastic Quad Flat Package (100-pin PQFP), and a Thin Quad Flat Package (TQFP 80-pin). There are several small functional and physical differences between the 80-pin TQFP and the 84-pin PLCC and 100-pin PQFP configurations. Because of the smaller number of pins in the TQFP configuration versus the PLCC configuration, four pins are not bonded out. Though the die is identical in all three package configurations, the removal of these four pins does cause some functionality differences between the TQFP and the PLCC and PQFP configurations. Depending on the application, the removal of these pins will or will not have an effect. (See section: "Pins Removed for TQFP Package and Their Effects.)

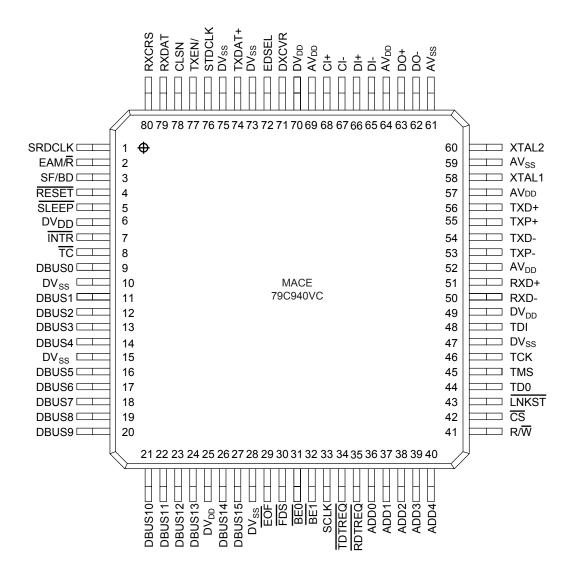

With the rise of embedded networking applications operating in harsh environments where temperatures may exceed the normal commercial temperature (0°C to +70°C) window, an industrial temperature (-40°C to +85°C) version is available in all three packages; 84-pin PLCC, 100-pin PQFP and 80-pin TQFP. The industrial temperature version of the MACE Ethernet controller is characterized across the industrial temperature range (-40°C to +85°C) within the published power supply specification (4.75 V to 5.25 V; i.e., \pm 5% V_{CC}). Thus, conformance of MACE performance over this temperature range is guaranteed by the design and characterization monitor.

Rochester Ordering Guide


*Most products can also be offered as RoHS compliant, designated by a –G suffix. Please contact factory for more information.

Rochester Part Number	AMD Part Number	Package	Temperature
Am79C940B-16JC	Am79C940B-16JC	LDCC-84, Plastic	0° to +70°C
Am79C940B-25JC	Am79C940B-25JC	LDCC-84, Plastic	0° to +70°C
Am79C940BJC	Am79C940BJC	LDCC-84, Plastic	0° to +70°C
Am79C940BJI	Am79C940BJI	LDCC-84, Plastic	-40° to +85°C
Am79C940BKC	Am79C940BKC	TPAK-100, Plastic	0° to +70°C
Am79C940BKC/W	Am79C940BKC/W	QFP-100, Plastic	0° to +70°C
Am79C940BKI	Am79C940BKI	TPAK-100, Plastic	-40° to +85°C
Am79C940BKI/W	Am79C940BKI/W	QFP-100, Plastic	-40° to +85°C
Am79C940BVC	Am79C940BVC	TPAK-80, Plastic	0° to +70°C
Am79C940BVC/W	Am79C940BVC/W	TQFP-80, Plastic	0° to +70°C
Am79C940BVI	Am79C940BVI	TPAK-80, Plastic	-40° to +85°C
Am79C940BVI/W	Am79C940BVI/W	TQFP-80, Plastic	-40° to +85°C

CONNECTION DIAGRAMS PL 084 PLCC PACKAGE



CONNECTION DIAGRAMS PQR100 PQFP PACKAGE

79C940

CONNECTION DIAGRAMS PQT080 TQFP PACKAGE

Notes: Four pin functions available on the PLCC and PQFP packages are not available with the TQFP package. (See full data sheet for description of pins not included with the 80-pin TQFP package. In particular, see section "Pin Functions not available with the 80-pin TQFP package.")

ABSOLUTE MAXIMUM RATINGS

Storage Temperature65°C to +150°C
Ambient Temperature Under Bias O°C to +70°C
Supply Voltage to AVSS or DVss (AVDD, DVDD)0.3 V to +6.0 V
Office and the set of

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices
Ambient Temperature (T _A) $\dots \dots \dots 0^{\circ}$ C to +70°C
Industrial (I) Devices
Ambient Temperature (T _A) $\dots \dots -40^{\circ}C$ to +85°C
V _{CC} Supply Voltages
(AVDD, DVDD) 5 V \pm 5%
All inputs within the range: AVDD – 0.5 V \leq Vin \leq AVSS + 0.5 V, or DV _{DD} – 0.5 V \leq Vin \leq
Operating ranges define those limits between which the func-

tionality of the device is guaranteed.

DC CHARACTERISTICS (Unless otherwise noted, parametric values are the same between Commercial devices and Industrial devices.)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
VIL	Input LOW Voltage			0.8	V
V _{IH}	Input HIGH Voltage		2.0	1 1	V
	XTAL1 Input LOW Voltage	V _{SS} = 0.0 V	-0.5	0.8	V
V_{ILX}	(External Clock Signal)		-0.5	0.8	v
M	XTAL1 Input HIGH Voltage	V _{SS} = 0.0 V	V _{DD}	V _{DD+}	V
V _{IHX}	(External Clock Signal)		0.8	0.5	v
V _{OL}	Output LOW Voltage	I _{OL} = 3.2 mA		0.45	V
V _{OH}	Output HIGH Voltage	I _{OH} = -0.4 mA (Note 1)	2.4		V
I _{IL1}	Input Leakage Current	V _{DD} = 5 V, V _{IN} = 0 V (Note 2)	-10	10	μA
I _{IL2}	Input Leakage Current	V _{DD} = 5 V, V _{IN} = 0 V (Note 2)	-200	200	μA
I _{IH}	Input Leakage Current	V _{DD} = 5 V, V _{IN} = 2.7 V (Note 3)		-100	μA
I _{IAXD}	Input Current at DI+ and DI–	-1 V < V _{IN} < AV _{DD} + 0.5 V	-500	+500	μA
I _{IAXC}	Input Current at CI+ and CI–	-1 V < V _{IN} < AV _{DD} + 0.5 V	-500	+500	μA
I _{ILXN}	XTAL1 Input LOW Current during normal operation	V _{IN} = 0 V SLEEP = HIGH		-92 (Note 9)	μA
I _{IHXN}	XTAL1 Input HIGH Current during normal operation	V _{IN} = 5.5 V SLEEP = HIGH		92 (Note 10)	μA
I _{ILXS}	XTAL1 Input LOW Current during Sleep	V _{IN} = 0 V SLEEP = LOW		<10	μA
I _{IHXS}	XTAL1 Input HIGH Current during Sleep	$\frac{V_{IN} = 5.5 V}{SLEEP} = LOW$		410	μA
I _{OZ}	Output Leakage Current	0.4 V < V _{OUT} < V _{DD} (Note 4)	-10	10	μA
V _{AOD}	Differential Output Voltage (DO+)–(DO–)	R _L = 78 Ω	630	1200	mV
V _{AODOFF}	Transmit Differential Output Idle Voltage	R _L = 78 Ω (Note 5)	-40	+40	mV

DC CHARACTERISTICS (Continued)

Parameter Symbol	Parameter Description	Test Conditions	Min	Max	Unit
	Transmit Differential	R _I = 78 Ω	_1	+1	mA
AODOFF	Output Idle Current			· ·	
Vieni	DO± Common Mode	R _I = 78 Ω	2.5	AVDD	V
V _{AOCM}	Output Voltage		2.5	AVDD	v
V I	DO± Differential Output	R ₁ = 78 Ω (Note 6)	-25	25	mV
V _{OD} I	Voltage Imbalance	$R_{L} = 78.22$ (Note 0)	-25	25	IIIV
V	Receive Data Differential	$P = 79 \circ (Nata 6)$	25	25	m)/
V _{ATH}	Input Threshold	R _L = 78 Ω (Note 6)	-35	35	mV
14	DI± and CI± Differential		100	075	
V _{ASQ}	Input Threshold Squelch	R _L = 78 Ω (Note 6)	-160	-275	mV
14	DI± and CI± Differential			4.5	
V _{IRDVD}	Mode Input Voltage Range			1.5	V
14	DI± and CI± Input Bias	L = 0 m A	AV 0.0		
V _{ICM}	Voltage	I _{IN} = 0 mA	AV _{DD} –3.0	AV _{DD} –0.8	V
V _{OPD}	DI± Undershoot Voltage at Zero	(Note 5)		-100	mV
	Differential on Transmit Return to Zero (ETD)				
	Device Queek, Queek	SCLK = 25 MHz		75	^
I _{DD}	Power Supply Current	XTAL1 = 20 MHz		75	mA
		SLEEP Asserted, AWAKE = 0			
IDDSLEEP	Power Supply Current	RWAKE = 1 (Note 7)		100	μA
		SLEEP Asserted, AWAKE = 1			
IDDSLEEP	Power Supply Current	RWAKE = 0 (Note 7)		10	mA
		SLEEP Asserted, AWAKE = 0			
IDDSLEEP	Power Supply Current	RWAKE = 1 (Note 7)		20	mA
wisted Pair	Interface				
I _{IRXD}	Input Current at RXD±	AV _{SS} < V _{IN} < AV _{DD}	-500	500	μA
R _{RXD}	RXD± Differential Input Resistance	(Note 8)	10		KΩ
	RXD±, RXD– Open Circuit				
V _{TIVB}	Input Voltage (Bias)	I _{IN} = 0 mA	AV _{DD} –3.0	AV _{DD} –1.5	V
	Differential Mode Input			<u> </u>	
V_{TIDV}	Voltage Range (RXD±)	AV _{DD} = +5V	-3.1	+3.1	V
	RXD Positive Squelch	Sinusoid		<u> </u>	
V_{TSQ+}	Threshold (Peak)	5 MHz ≤ f ≤10 MHz	300	520	mV
	RXD Negative Squelch	Sinusoid			
V_{TSQ-}	Threshold (Peak)	5 MHz \leq f \leq 10 MHz	-520	-300	mV
	RXD Post-Squelch	Sinusoid		<u> </u>	
V _{THS+}	Positive Threshold (Peak)	5 MHz \leq f \leq 10 MHz	150	293	mV
	RXD Post-Squelch	Sinusoid		<u> </u>	
V _{THS-}	Negative Threshold) (Peak)	5 MHz \leq f \leq 10 MHz	-293	-150	mV
	RXD Positive Squelch			<u> </u>	
V _{LTSQ+}	Threshold (Peak)		180	312	mV
	RXD Negative Squelch			<u> </u>	
V _{LTSQ-}	Threshold (Peak)	LRT = LOW	-312	-180	mV
	RXD Post-Squelch Positive				
V _{LTHS+}		LRT = LOW	90	156	mV
	Threshold (Peak)				

Specification Number 79C940B-CI (A) Rev C

DC CHARACTERISTICS (Continued)

Parameter Symbol	Parameter Description	Test Conditions	Min	Мах	Unit
V _{LTHS-}	RXD Post-Squelch Negative Threshold (Peak)	LRT = LOW	-156	-90	mV
V _{RXDTH}	RXD Switching Threshold	(Note 4)	-35	35	mV
V _{TXH}	TXD± and TXD± Output HIGH Voltage	DV _{SS} = 0V	DV _{DD} –0.6	DV _{DD}	V
V _{TXL}	TXD± and TXD± Output LOW Voltage	DV _{DD} = +5V	DV _{SS}	DV _{SS} + 0.6	V
V _{TXI}	TXD± and TXD± Differential Output Voltage Imbalance		-40	+40	mV
V _{TXOFF}	TXD± and TXD± Idle Output Voltage	DV _{DD} = +5V		40	mV
R _{TX}	TXD± Differential Driver Output Impedance	(Note 8)		40	Ω
	TXD± Differential Driver Output Impedance	(Note 8)		80	Ω

Notes:

- 1. V_{OH} does not apply to open-drain output pins.
- 2. I_{IL1} and I_{IL2} applies to all input only pins except DI±, CI±, and XTAL1.
 - $I_{IL1} = ADD4-0, \overline{BE}1-0, \overline{CS}, \overline{EAM/R}, \overline{FDS}, \overline{RESET}, RXDAT, R/W, SCLK.$
 - $I_{IL2} = \overline{TC}$, TDI, TCK, TMS.
- 3. Specified for input only pins with internal pull-ups: TC, TDI, TCK, TMS.
- 4. I_{OZ} applies to all three-state output pins and bi-directional pins.
- 5. Test not implemented to data sheet specification.
- 6. Tested, but to values in excess of limits. Test accuracy not sufficient to allow screening guard bands.
- 7. During the activation of SLEEP:
 - -The following pins are placed in a high impedance state: SRD, SF/BD, TXDAT, DXCVR, DTV, TDTREQ, RDTREQ, NTR and TDO.
 - -The following I/O pins are placed in a high impedance mode and have their internal TTL level translators disabled: DBUS15–0, EOF, SRDCLK, RXCRS, RXDAT, CLSN, TXEN, STDCLK and TXDAT+.
 - -The following input pin has its internal pull-up and TTL level translator disabled: \overline{TC} .
 - -The following input pins have their internal TTL level translators disabled and do not have internal pull-ups: \overline{CS} , \overline{FDS} , R/W, ADD4-0, SCLK, $\overline{BE0}$, $\overline{BE1}$ and $\overline{EAM/R}$.
 - -The following pins are pulled low: XTAL1 (XTAL2 feedback is cut off from XTAL1), TXD+, TXD-, TXP+, TXP-, DO+ and DO.
 - -The following pins have their input voltage bias disabled: DI+, DI, CI+ and CI.
 - -AWAKE and RWAKE are reset to zero. I_{DDSLEEP}, with either AWAKE set or RWAKE set, will be much higher and its value remains to be determined.
- 8. Parameter not tested.
- 9. For industrial temperature version, Max value is $-150 \ \mu A$.
- 10. For industrial temperature version, Max value is +150 $\mu\text{A}.$

AC CHARACTERISTICS (Unless otherwise noted, parametric values are the same between Commercial devices and Industrial devices.)

No.	Parameter Symbol	Parameter Description	Test Conditions	Min (ns)	Max (ns)
Clock ar	nd Reset Timing]	•	•	
1	t _{SCLK}	SCLK period		40	1000
2	t _{SCLKL}	SCLK LOW pulse width		0.4*t _{SCLK}	0.6*t _{SCLK}
3	t _{SCLKH}	SCLK HIGH pulse width		0.4*t _{SCLK}	0.6*t _{SCLK}
4	t _{SCLKR}	SCLK rise time			5
5	t _{SCLKF}	SCLK fall time			5
6	t _{RST}	RESET pulse width		15*t _{SCLK}	
7	t _{BT}	Network Bit Time (BT)=2*tX1 or tSTDC		99	101
Internal	MENDEC Clock	Timing			
9	t _{X1}	XTAL1 period		49.995	50.005
11	t _{X1H}	XTAL1 HIGH pulse width		20	
12	t _{X1L}	XTAL1 LOW pulse width		20	
13	t _{X1R}	XTAL1 rise time			5
14	t _{X1F}	XTAL1 fall time			5
BIU TIM	ING (Note 1)	·			
31	t _{ADDS}	Address valid setup to SCLK \downarrow		9	
32	t _{ADDH}	Address valid hold after SCLK \downarrow		2	
1. 33	+	CS or FDS and TC, BE1–0,		9	
	t _{SLVS}	R/W setup to SCLK↓		9	
34	+	CS or FDS and TC, BE1–0,		2	
54	t _{SLVH}	R/₩ hold after SCLK↓		2	
35	t _{DATD}	Data out valid delay from SCLK \downarrow	C _L = 100 pF (Note 2)		32
36	t _{DATH}	Data out valid hold from SCLK \downarrow		6	
37	t _{DTVD}	DTV valid delay from SCLK \downarrow	C _L = 100 pF (Note 2)		32
38	t _{DTVH}	DTV valid hold after SCLK↓		6	
39	t _{EOFD}	EOF valid delay from SCLK↓	C _L = 100 pF (Note 2)		32
40	t _{EOFH}	EOF output valid hold after SCLK \downarrow		6	
41	t _{CSIS}	CS inactive prior to SCLK \downarrow		9	
42	t _{EOFS}	EOF input valid setup to SCLK \downarrow		9	
43	t _{EOFH}	EOF input valid hold after SCLK \downarrow		2	
44	t _{RDTD}	RDTREQ valid delay from SCLK \downarrow	C _L = 100 pF (Note 2)		32
45	t _{RDTH}	\overline{RDTREQ} input valid hold after SCLK \downarrow		6	
46	t _{TDTD}	TDTREQ valid delay from SCLK↓	C _L = 100 pF (Note 2)		32
47	t _{тотн}	TDTREQ input valid hold after SCLK \downarrow		6	
48	t _{DATS}	Data in valid setup to SCLK \downarrow		9	
49	t _{DATIH}	Data in valid setup after SCLK \downarrow		2	
50	t _{DATE}	Data output enable delay from SCLK \downarrow (Note 3)		0	
51	t _{DATD}	Data output disable delay from SCLK \downarrow (Note 3, 4)			25

Notes:

 The following BIU timing assumes that EDSEL = 1. Therefore, these parameters are specified with respect to the falling edge of SCLK (SCLK↓). If EDSEL = 0, the same parameters apply but should be referenced to the rising edge of SCLK ↑).

2. Tested with C_L set at 100 pF and derated to support the Indicated distributed capacitive Load. See the BIU output valid delay vs. Load Chart.

3. Guaranteed by design-not tested.

4. t_{DATD} is defined as the time required for outputs to turn high impedence and is not referred to as output voltage lead.

AC CHARACTERISTICS (continued)

No.	Parameter Symbol	Parameter Description	Test Conditions	Min (ns)	Max (ns)
AUI Timi	ing				
53	t _{DOTD}	XTAL1 (externally driven) to DO± ουτπυτ			100
54	t _{DOTR}	DO± rise time (10% to 90%)		2.5	5.0
55	t _{DOTF}	DO± fall time (10% to 90%)		2.5	5.0
56	t _{DOETM}	DO± rise and fall mismatch			1
57	t _{DOETD}	DO± End of Transmit Delimiter		200	375
58	t _{PWRDI}	DI± pulse width to reject	input > _{VASQ}		15
59	t _{PWODI}	DI± pulse width to turn on internal DI carrier sense	input > _{VASQ}	45	
60	t _{PWMDI}	DI± pulse width to maintain internal DI carrier sense on	input > _{VASQ}	45	136
61	t _{PWKDI}	DI± pulse width to turn internal DI carrier sense off	input > _{VASQ}	200	
62	t _{PWRCI}	CI± pulse width to reject	input > _{VASQ}		10
63	t _{PWOCI}	$Cl\pm$ pulse width to turn on internal SQE sense	input > _{VASQ}	26	
64	t _{PWMCI}	Cl± pulse width to maintain internal SQE sense on	input > _{VASQ}	26	90
65	t _{PWKCI}	Cl± pulse width to turn internal SQE sense off	input > _{VASQ}	160	
66	t _{SQED}	CI± SQE Test delay from O± inactive	input > _{VASQ}		
67	t _{SQEL}	CI± SQE Test length	input > _{VASQ}		
79	t _{CLSHI}	CLSN high time		t _{STDC} + 30	
80	t _{TXH}	TXEN or DO± hold time from CLSN↑	input > _{VASQ}	32*t _{STDC}	96*t _{STDC}
DAI Port	Timing				
70	t _{TXEND}	STDCLK [↑] delay to $\overline{TXEN}\downarrow$	C _L = 50 pF		70
72	t _{TXDD}	STDCLK [↑] delay to TXDAT± change	C _L = 50 pF		70
80	t _{TXH}	\overline{TXEN} or $TXDAT\pm$ hold time from $CLSN\uparrow$		32*t _{STDC}	96*t _{STDC}
95	t _{DOTF}	$\frac{\text{Mismatch in STDCLK} \neq \text{to } \overline{\text{TXEN}} \downarrow \text{ and } }{\overline{\text{TXDAT}} \pm \text{ change}}$			15
96	t _{TXDTR}	TXDAT± rise time	See Note 1		5
97	t _{TXDTF}	TXDAT± fall time	See Note 1		5
98	t _{TXDTM}	TXDAT± rise and fall mismatch	See Note 1		1
99	t _{TXENETD}	TXEN End of Transmit Delimiter		250	350
100	t _{FRXDD}	First RXDAT↓ delay to RXCRS↑			100
101	t _{LRXDD}	Last RXDAT \neq delay to RXCRS \downarrow			120
102	t _{CRSCLSD}	RXCRS ^{\uparrow} delay to CLSN ^{\uparrow} (TXEN = 0)			100

AC CHARACTERISTICS (continued)

No.	Parameter Symbol	Parameter Description	Test Conditions	Min (ns)	Max (ns)
GPSI Cloci	k Timing		L	1	
17	t _{STDC}	STDCLK period		99	101
18	t _{STDCL}	STDCLK low pulse width	See Note 1	45	
19	t _{STDCH}	STDCLK high pulse width		45	
20	t _{STDCR}	STDCLK rise time	See Note 1		5
21	t _{STDCF}	STDCLK fall time	See Note 1		5
22	t _{SRDC}	SRDCLK period		85	115
23	t _{SRDCH}	SRDCLK HIGH pulse width		38	
24	t _{SRDCL}	SRDCLK LOW pulse width		38	
25	t _{SRDCR}	SRDCLK rise time	See Note 1		5
26	t _{SRDCF}	SRDCLK fall time	See Note 1		5
GPSI Timir	ng				
70	t _{TXEND}	STDCLK [↑] delay to TXEN [↑]	(C _L = 50 pF)		70
71	t _{TXENH}	TXEN hold time from STDCLK [↑]	(C _L = 50 pF)	5	
72	t _{TXDD}	STDCLK [↑] delay to TXDAT+ change	(C _L = 50 pF)		70
73	t _{TXDH}	TXDAT+ hold time from STDCLK↑	(C _L = 50 pF)	5	
74	t _{RXDR}	RXDAT rise time	See Note 1		8
75	t _{RXDF}	RXDAT fall time	See Note 1		8
76	t _{RXDH}	RXDAT hold time (SRDCLK [↑] to RXDAT change)		25	
77	t _{RXDS}	RXDAT setup time (RXDAT stable to SRDCLK [↑])		0	
78	t _{CRSL}	RXCRS low time		t _{STDC} + 20	
79	t _{CLSHI}	CLSN high time		t _{STDC} + 30	
80	t _{TXH}	TXEN or TXDAT± hold time from CLSN↑		32*t _{STDC}	96*t _{STDC}
81	t _{CRSH}	RXCRS hold time from SRDCLK1		0	
ADI Featu	ure Timing				
85	t _{DSFBDR}	SRDCLK↓ delay to SF/BD↑			20
86	t _{DSFBDF}	SRDCLK↓ delay to SF/BD↑			20
87	t _{EAMRIS}	EAM/R invalid setup prior to SRDCLK↓ after SFD		-150	
88	t _{EAMS}	EAM setup to SRDCLK↓ at bit 6 of Source Address byte 1 (match packet)		0	
89	t _{EAMR} L	EAM/R low time		200	
90	t _{SFBDHIH}	SF/BD high hold from last SRDCLK↓		100	
91	t _{EARS}	EAR setup SRDCLK↓ at bit 6 of message byte 64 (reject normal packet)		0	

Note:

1. Not tested but data available upon request.

AC CHARACTERISTICS (continued)

No.	Parameter Symbol	Parameter Description	Test Conditions	Min	Мах
IEEE 114	9.1 Timing		<u>I</u> I		
109	t _{TCLK}	TCK Period, 50% duty cycle (+5%)		100	
110	t _{su1}	TMS setup to TCK↑		8	
111	t _{su2}	TDI setup to TCK↑		5	
112	t _{hd1}	TMS hold time from TCK↑		5	
113	t _{hd2}	TDI hold time from TCK↑		10	
114	t _{d1}	TCK↓ delay to TDO			30
115	t _{d2}	TCK↓ delay to SYSTEM OUTPUT			35
10BASE-	-T Transmit Ti	ming		Min	Max
125	t _{TETD}	Transmit Start of Idle		250	350
126	t _{TR}	Transmitter Rise Time	(10% to 90%)		5.5
127	t _{TF}	Transmitter Fall Time	(90% to 10%)		5.5
128	t _{TM}	Transmitter Rise and Fall Time Mismatch			1
129	t _{XMTON}	XMT# Asserted Delay			100
130	t _{XMTOFF}	XMT# De-asserted Delay		TBD	TBD
131	t _{PERLP}	Idle Signal Period		8	24
132	t _{PWLP}	Idle Link Pulse Width	(Note 1)	75	120
133	t _{PWPLP}	Predistortion Idle Link Pulse Width	(Note 1)	45	55
134	t _{JA}	Transmit Jabber Activation Time		20	150
135	t _{JR}	Transmit Jabber Reset Time		250	750
136	t _{JREC}	Transmit Jabber Recovery Time (Minimum Time Gap Between Transmitted Packets to Prevent Jabber Activation)		1.0	
10BASE-	-T Receive Tin	ning			
140	t _{PWNRD}	RXD Pulse Width Not to Turn Off Internal Carrier Sense	VIN > VTHS (min)	136	-
141	t _{PWROFF}	RXD Pulse Width to Turn Off VIN> VTHS (min)		200	
142	t _{RETD}	Receive Start of Idle		200	
143	t _{RCVON}	RCV# Asserted Delay		t _{RON} – 50	t _{RON} – 100
144	t _{RCVOFF}	RCV# De-asserted Delay		TBD	TBD

Note:

1. Not tested but data available upon request.

Rochester Electronics guarantees performance of its semiconductor products to the original OEM specifications. "Typical" values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing. Rochester Electronics reserves the right to make changes without further notice to any specification herein.