The documentation process conversion measures necessary to comply with this revision shall be completed by 23 August 1997 INCH POUND

MIL-PRF-19500/501C 23 May 1997 SUPERSEDING MIL-S-19500/501B 25 March 1995

PERFORMANCE SPECIFICATION

SEMICONDUCTOR DEVICE, DARLINGTON TRANSISTOR, PNP, SILICON, POWER TYPE 2N6051, 2N6052 JAN, JANTX, AND JANTXV

This specification is approved for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 <u>Scope</u>. This specification covers the performance requirements for PNP, Darlington, silicon, power transistors. Three levels of product assurance are provided for each device type as specified in MIL-PRF-19500.
 - 1.2 Physical dimensions. See figure 1 (TO-3).
 - 1.3 Maximum ratings.

	l P _T	<u>1</u> /	VCBO	VCEO	VEBO	l _C	I _B	T _p and T _{STG}
			1					
	$ T_{C} = +25^{\circ}C$	$ T_{C} = +100^{\circ}C$					l	
	<u>W</u>	<u> </u>	<u>V dc</u>	<u>V dc</u>	<u>V dc</u>	A dc	<u>A dc</u>	<u>°C</u> i
2N6051	150	75	80	80	5	12	0.2	-55 to +175
2N6052	150	75	100	100	5	12	0.2	-55 to +175

^{1/} Derate linearly at 1.00 W/°C above T_C > +25°C.

1.4 Primary electrical characteristics.

	h _{FE2} <u>1</u> / V _{CE} = 3 V dc	h _{FE3} <u>1</u> / V _{CE} = 3 V dc	h _{fe} V _{CE} = 3 V dc	h _{fe} V _{CE} = 3 V dc	C _{obo} 100 kHz ≤ f ≥ 1 MHz	Pulse response	
Ī	IC = 6 A dc	I _C = 12 A dc	I _C = 5 A dc	IC = 5 A dc	$ V_{CB} = 10 \text{ V dc}, I_{E} = 0$	l ton	l t _{off}
I			f = 1 kHz	f = 1 MHz	1	1	
İ		j			pF	μ <u>s</u>	<u>μs</u>
Min	1,000	150	1,000	10	1	1	1
Max	18,000	İ	i	250	300	1 2	10

Ī	V _{BE(sat)}	VCE(sat)1	VCE(sat)2	R _θ JC
	$ I_{C} = 12 \text{ A dc}$	$ I_{C} = 12 \text{ A dc}$	$ I_C = 6 A dc$	1 1
	$ I_B = 120 \text{ mA dc } \underline{1} /$	$ I_B = 120 \text{ mA dc } \underline{1}/$	$ I_B = 24 \text{ mA dc } 1/$	1
ĺ	V dc	V dc	V dc	<u>°C/W</u>
Min				
Max	4.0	3.0	2.0	1.00

Beneficial comments (recommendations, additions, deletions) and any pertinent data which may be of use in improving this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAT, 3990 East Broad Street, Columbus, OH 43216-5000, by using the Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of this document or by letter.

1/ Pulsed, see 4.5.1

AMSC N/A <u>DISTRIBUTION STATEMENT A</u>. Approved for public release; distribution is unlimited.

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3 and 4 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements documents cited in sections 3 and 4 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications, standards, and handbooks</u>. The following specifications, standards, and handbooks form a part of this document to the extent specified herein. Unless otherwise specified, the issues of these documents are those listed in the issue of the Department of Defense Index of Specifications and Standards (DODISS) and supplement thereto, cited in the solicitation (see 6.2).

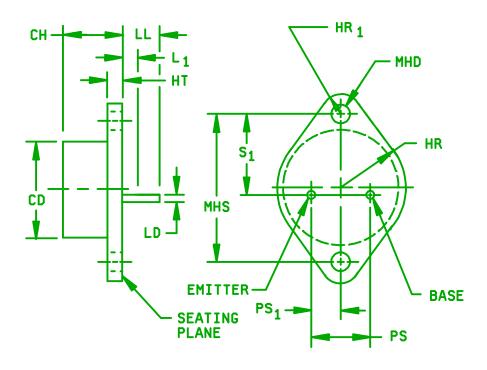
SPECIFICATION

DEPARTMENT OF DEFENSE

MIL-PRF-19500 - Semiconductor Devices, General Specification for.

STANDARD

MILITARY


MIL-STD-750 - Test Methods for Semiconductor Devices.

(Unless otherwise indicated, copies of the above specifications, standards, and handbooks are available from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 Order of precedence. In the event of a conflict between the text of this document and the references cited herein (except for related associated specifications or specification sheets), the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 Qualification. Devices furnished under this specification shall be products that are authorized by the qualifying activity for listing on the applicable qualified products list before contract award (see 4.2 and 6.3).
- 3.2 <u>Associated detail specification</u>. The individual item requirements shall be in accordance with MIL-PRF-19500 and as specified herein.
- 3.3 <u>Abbreviations, symbols, and definitions</u>. Abbreviations, symbols, and definitions used herein shall be as specified in MIL-PRF-19500.
- 3.4 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified on figure 1 herein
 - 3.4.1 Lead finish. Lead finish shall be solderable in accordance with MIL-STD-750, MIL-PRF-19500, and herein.
 - 3.4 Marking. Marking shall be in accordance with MIL-PRF-19500.
 - 4. QUALITY ASSURANCE PROVISIONS
 - 4.1 <u>Classification of inspections</u>. The inspection requirements specified herein are classified as follows:
 - a. Qualification inspection (see 4.2).
 - b. Screening (see 4.3)
 - c. Conformance inspection (see 4.4).

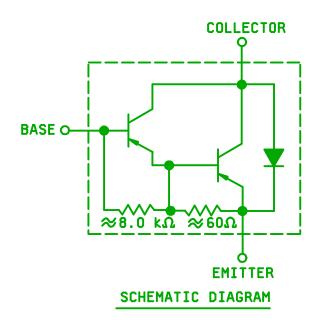


FIGURE 1. Physical dimensions and schematic circuit.

<u> </u> 	<u> </u>	Dimen	sions		 Notes	
Ltr 	 <u> </u> <u> </u> no	ches	 Milli	 Millimeters		
<u> </u>	 Min	 Max	 Min	 Max		
 CH	 .250	 .328	 6.35	 8.33		
 <u> </u> LD	 .038	 .043	 0.97	 1.09	 5,9,11	
i I CD	İ	.875	İ	 22.23	 3,11	
 PS	1.420	1.440	110.67	111.18	 4, 10	
 PS ₁	 .205	.225	 5.21	5.72	 4,5,10	
 HT	1.060	1.135	1.52	3.43		
 LL	 .312	 .500	 7.92	 12.70	 5	
 L ₁	 	 .050	 	 1.27	 5, 9	
MHD	1.151	1.161	3.84	4.09	7,11	
 MHS	 1.177	1.197	 29.90	30.40		
 HR	 .495	 .525	 12.57	 13.34		
 HR ₁ 	 .131 	 .188 	 3.33 	 4.78 	 6 	
 s ₁	 .655 	 .675 	 16.64 	 17.15 	 4 	

NOTES:

- 1. Dimensions are in inches.
- 2. Metric equivalents are given for general information only.
- 3. Body contour is optional within zone defined by CD.
- 4. These dimensions shall be measured at points .050 inch (1.27 mm) to .055 inch (1.40 mm) below the seating plane. When gauge is not used, measurement shall be made at seating plane.
- Both terminals.
- 6. At both ends.
- 7. Two holes.
- 8. The collector shall be electrically connected to the case.
- 9. LD applies between L₁ and LL. Diameter is uncontrolled in L₁.
- 10. The seating plane of the header shall be flat within .001 inch (0.03 mm), concave to .004 inch (0.10 mm), convex inside a .930 inch (23.62 mm) diameter circle on the center of the header, and flat within .001 inch, (0.03 mm) concave to .006 inch (0.15 mm), convex overall.
- 11. In accordance with ANSI Y14.5M, diameters are equivalent to $\emptyset x$ symbology.

FIGURE 1. Physical dimensions and schematic circuit - Continued.

- 4.2 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-19500.
- 4.3 <u>Screening (JANTX and JANTXV levels only)</u>. Screening shall be in accordance with MIL-PRF-19500 (Appendix E, table IV), and as specified herein. The following measurements shall be made in accordance with table I herein. Devices that exceed the limits of table I herein shall not be acceptable.

Screen (see appendix E, table IV of MIL-PRF-19500)	Measurements
9	I CEX1
11 	I _{CEX1} , h _{FE2} ; ΔI _{CEX1} = 100 percent of initial value or 100 μA dc; whichever is greater.
12	See 4.3.1
13 	Subgroup 2 of table I herein; ΔI_{CEX1} = 100 percent of initial value or 100 μ A dc, whichever is greater. Δh_{FE2} = \pm 40 percent of initial value.

4.3.1 Power burn-in conditions. Power burn-in conditions are as follows:

 T_J = +162.5°C \pm 12.5°C; $V_{CE} \ge 10$ V dc, $T_A \le$ +100°C.

NOTE: No heat sink or forced air cooling on the devices shall be permitted.

- 4.4 Conformance inspection. Conformance inspection shall be in accordance with MIL-PRF-19500.
- 4.4.1 <u>Group A inspection</u>. Group A inspection shall be conducted in accordance with appendix E, table V of MIL-PRF-19500, and table I herein. Electrical measurements (end-points) and delta requirements shall be in accordance with the applicable steps of table II herein.
- 4.4.2 <u>Group B inspection</u>. Group B inspection shall be conducted in accordance with the conditions specified for subgroup testing in appendix E, table VIb (JAN, JANTX and JANTXV) of MIL-PRF-19500. Electrical measurements (end-points) and delta requirements shall be in accordance with the applicable steps of table II herein.
 - 4.4.2.1 Group B inspection, appendix E, table VIb (JAN, JANTX and JANTXV) of MIL-PRF-19500.

Subgroup	Method	Conditions
В3	1037	$V_{CB} \ge 10~V~dc; ~\Delta T_{J} = between~cycles \ge +100^{\circ}C.~~t_{On} = t_{Off} = 3~minutes~for~2,000~cycles.~No~heat~sink~or~forced-air~cooling~on~the~devices~shall~be~permitted.$
B5	3151	$R_{\theta JC} = 1^{\circ}C/W$ (maximum).

4.4.3 <u>Group C inspection</u>. Group C inspection shall be conducted in accordance with the conditions specified for subgroup testing in appendix E, table VII of MIL-PRF-19500. Electrical measurements (end-points) and delta requirements shall be in accordance with the applicable steps of table II herein.

4.4.3.1. Group C inspection, appendix E, table VII of MIL-PRF-19500.

Subgroup	Method	Conditions
C6	1037	$V_{CB} \ge 10 \text{ V dc}$; ΔT_J between cycles $\ge +100^{\circ}\text{C}$. $t_{OD} = t_{Off} = 3$ minutes for 6,000 cycles. No
		heat sink or forced-air cooling on device shall be permitted.

- 4.5 <u>Method of inspection</u>. Methods of inspection shall be as specified in the appropriate tables and as follows.
- 4.5.1 <u>Pulse measurements</u>. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750.

TABLE I. Group A inspection.

Method	Conditions Conditions Black condition D;	Symbol	Min	Max 	Unit
 3011	•	 	 		
 3011	•	 	 		
•	•	 	! 		
•	•		;		
 	I _C = 100 mA dc; pulsed (see 4.5.1) 	V(BR)CEO	 80 100	 	 V dc V dc
I	V _{CE} = 80 V dc	 	 	 0.5 0.5	 mA dc mA dc
 3041 	 Bias condition D V _{CE} = 40 V dc V _{CE} = 50 V dc	 ICEO 	 	 1.0 1.0	 mA dc mA dc
 3061 	 Bias condition D; V _{EB} = 5 V dc	 I _{EBO} 	 	 2.0 	 mA dc
 3066 	 Test condition B; V _{CE} = 3 V dc; I _C = 6 A dc	 V _{BE} 	 	2.8	 V dc
 3066 	 Test condition A; I _C = 12 A dc; I _B = 120 mA dc; pulsed (see 4.5.1)	 VBE(sat) 	 	4.0	 Vdc
 3071 	 I _C = 12 A dc; I _B = 120 mA dc; pulsed (see 4.5.1)	 ^V CE(sat)1 	 	3.0	 V dc
	 I _C = 6 A dc; I _B = 24 mA dc; pulsed (see 4.5.1)	l ^V CE(sat)2 	 	2.0	 Vdc
 3076 	V _{CE} = 3 V dc; I _C = 1 A dc; pulsed (see 4.5.1)	 hFE1 	 1,000 		
	· · · · · ·	 h _{FE2} 	 1,000 	 18,000 	
 3076 	 V _{CE} = 3 V dc; I _C = 12 A dc; pulsed (see 4.5.1)	 h _{FE3} 	 150 	 	
				IC = 100 mA dc;	

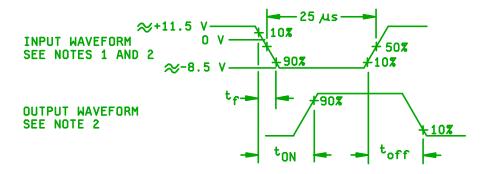
See footnote at end of table.

TABLE I. Group A inspection - Continued.

Inspection 1/	MIL-STD-750		│ <u>│</u> Symbol	Limit		 Unit
moposition <u>i</u>	Method	Conditions	 	Min	Max	
Subgroup 3	İ		<u> </u> 	i I		
High-temperature operation:		 T _A = +150°C				
Collector - emitter	 3041	 Bias condition A;	 ICEX2			
cutoff current		$ V_{BE} = 1.5 V dc;$	1	1		
2N6051	1	$ V_{CE} = 80 \text{ V dc}$	1	1	5.0	mA dc
2N6052	1	V _{CE} = 100 V dc	1		5.0	mA dc
Collector - emitter	3071	I _C = 6 A dc; I _B = 24 mA dc;	 VCE(sat)		2.0	 V dc
voltage (saturated)	1	pulsed (see 4.5.1)				I
Low-temperature operation:		T _A = -55°C	į		į	į
Forward-current	3076	V _{CE} = 3 V dc; I _C = 6 A dc;	 h _{FE4}	300		
transfer ratio		pulsed (see 4.5.1)				I
Subgroup 4			į		į	į
Small-signal short-	3206	V _{CE} = 3 V dc;	 h _{fe}	1,000		
circuit forward-		$ I_C = 5 A dc;$	1			
current transfer ratio		f = 1 kHz				I
Magnitude of common-	3306	V _{CE} = 3 V dc;	 h _{fe}	10	250	i
emitter small-signal		$ I_C = 5 A dc;$	l	1		
short-circuit forward- current transfer ratio		f = 1.0 MHz 	 	ļ	ļ ļ	
Open circuit output	 3236	 V _{CB} = 10 V dc; I _E = 0;	 C _{obo}		 300	 pF
capacitance	1	100 kHz ≤ f ≤ 1 MHz				
Pulse response	ļ	1				į
Turn-on time	1	(See figure 3); V _{CC} = 30 V dc;	l ton	1	2.0	μs
	l I	$ I_C = 5 \text{ A dc}; I_B = 20 \text{ mA dc}$	1	1	l I	l I
Turn-off time	i	(See figure 4); V _{CC} = 30 V dc;	toff	i	10	 μs
		$ I_C = 5 \text{ A dc}; I_{B1} = I_{B2} = 20 \text{ mA dc}$	1			
Subgroup 5						
Safe operating area (dc)	 3051	 T _C = +25°C +10°C -0°C;				
		t ≥ 1 s; 1 cycle; (see figure 3)				
Test 1		V _{CE} = 12.5 V dc; I _C = 12 A dc	į		į	
Test 2	1	V _{CE} = 30 V dc; I _C = 5 A dc			ļ	I

See footnote at end of table.

TABLE I. Group A inspection - Continued.


 Inspection <u>1</u> /	M	IL-STD-750		Limit		 Unit
	Method	Conditions	 	Min 	Max 	
 <u>Subgroup 5 Continued</u>			 	 		
Test 3	 	 	 	 	 	
 2N6051		 V _{CE} = 70 V dc; I _C = 200 mA dc	 	 		
 2N6052		 V _{CE} = 90 V dc; I _C = 155 mA dc	 	 	 	
 Safe operating area (switching) 	 	Load condition B; (clamped inductive load); $T_A = +25^{\circ}C$; $t_f + t_f \le 1.0 \mu s$; $t_f = 1.0 $	 	 	 	
 2N6051 	 	 clamp voltage = 80 +0, -5 V dc 	 	 	 	
2N6052 	 	l clamp voltage = 100 +0, -5 V dc Device fails if clamp voltage not reached	 	 	 	
 Endpoint electrical measurements		 See table II, steps 1 and 5 	 	 	 	
Subgroups 6 and 7		 	 	 	 	
l Not applicable _	 	 	 	 <u> </u>	 	

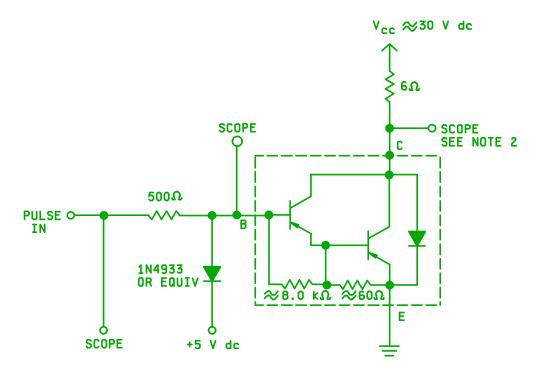

^{1/} For sampling plan, see MIL-PRF-19500.

TABLE II. Groups A, B, and C electrical measurements. 1/2/

 Step	 Inspection	MIL-STD-750		 l Symbol	Limit		l Unit
		Method	Conditions		Min	Max	
 1. 	Collector - emitter cutoff current 2N6051 2N6052	 3041 	Bias condition A; VBE = 1.5 V dc; VCE = 80 V dc VCE = 100 V dc	CEX1	 	0.5	mA dc
 2. 	Collector - emitter cutoff current 2N6051	 3041 	Bias condition A; VBE = 1.5 V dc; VCE = 80 V dc VCE = 100 V dc	 I _{CEX1} 		 1.0 	
 3. 	Forward-current transfer ratio	 3076 	V _{CE} = 3 V dc; I _C = 6 A dc; pulsed (see 4.5.1)	 hFE2 	 1,000 	 18,000 	
4. 	Forward-current transfer ratio 	3076 	V _{CE} = 3 V dc; I _C = 6 A dc; pulsed (see 4.5.1)	Δh _{FE2} 	±40 percent 	 	

- $\underline{1}$ / The electrical measurements for appendix E, table VIb (JAN, JANTX and JANTXV) of MIL-PRF-19500 are as follows:
 - a. Subgroup 2, see table II herein, steps 1 and 3.
 - b. Subgroups 3 and 6, see table II herein, steps 2 and 4.
- $\underline{2}\!\!/$ The electrical measurements for appendix E, table VII of MIL-PRF-19500 are as follows:
 - a. Subgroup 3, see table II herein, steps 1 and 3.
 - b. Subgroup 6, see table II herein, steps 2 and 4.

NOTES:

- 1. The input waveform is supplied by a pulse generator with the following characteristics: $t_f \le 20$ ns, t_f
- 2. Output wave forms are monitored on an oscilloscope with the following characteristics: $t_r \le 2.0 \text{ ns}, Z_{in} \ge 20 \text{ k}\Omega, C_{in} \le 11.5 \text{ pF}.$
- 3. Resistors shall be noninductive types.
- 4. The dc power supplies may require additional by-passing in order to minimize ringing.

FIGURE 2. Pulse response test circuit.

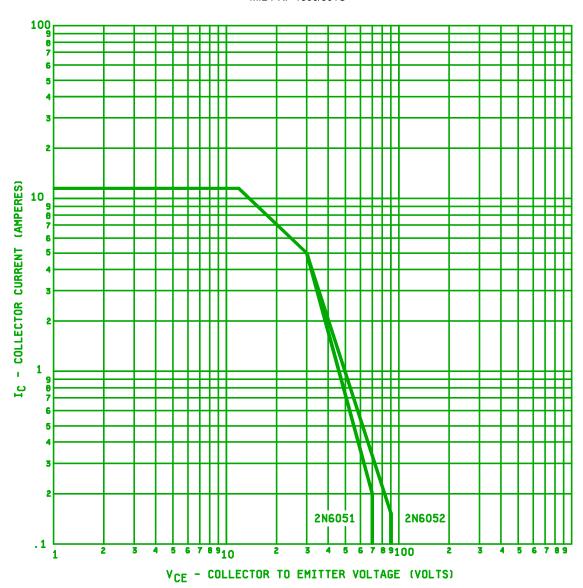


FIGURE 3. Maximum safe operating area graph (continuous dc).

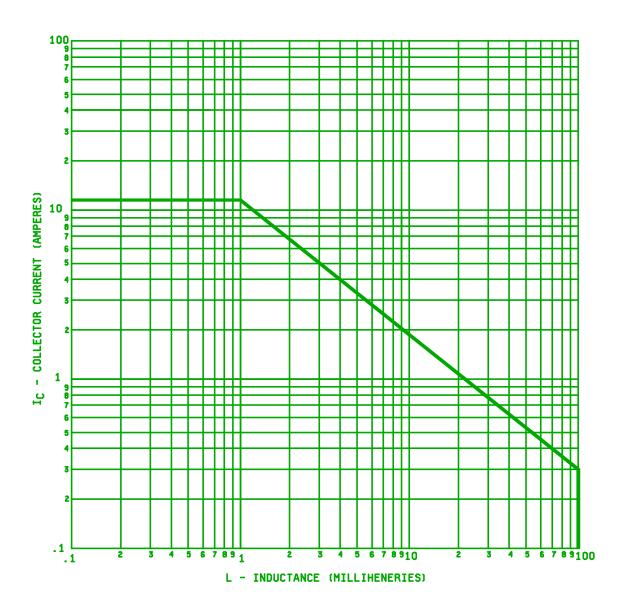


FIGURE 4. <u>Safe operating area for switching between saturation and cutoff (unclamped inductive load).</u>

5. PACKAGING

- 5.1 <u>Packaging</u>. Packaging shall prevent mechanical damage of the devices during shipping and handling and shall not be detrimental to the device. When actual packaging of material is to be performed by DoD personnel, these personnel need to contact the responsible packaging activity to ascertain requisite packaging requirements. Packaging requirements are maintained by the Inventory Control Points' packaging activity within the Military Department or Defense Agency, or within the Military Departments' System Command. Packaging data retrieval is available from the managing Military Departments' or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.
 - 5.2 Marking. Unless otherwise specified (see 6.2), marking shall be in accordance with MIL-STD-129.
 - 6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but is not mandatory.)

- 6.1 Notes. The notes specified in MIL-PRF-19500 are applicable to this specification.
- 6.2 Acquisition requirements. See MIL- PRF-19500.
- 6.3 Qualification. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Products List QPL No.19500 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from Defense Supply Center Columbus, ATTN: DSCC-VAT, 3990 East Broad Street, Columbus, OH 43216-5000.
- 6.4 <u>Changes from previous issue</u>. Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

CONCLUDING MATERIAL

Custodians: Army - CR Navy - EC Air Force - 17 NASA - NA Preparing activity: DLA - CC

Review activities:

(Project 5961- 1902-10)

Air Force - 13, 19, 85, 99

STAND	DARDIZATION DOCUMENT IMPROVEMENT PROP	POSAL					
INSTRUCTIONS							
The preparing activity must complete blocks 1, 2 letter should be given.	2, 3, and 8. In block 1, both the document number an	nd revision					
2. The submitter of this form must complete blocks	s 4, 5, 6, and 7.						
3. The preparing activity must provide a reply within	n 30 days from receipt of the form.						
requirements on current contracts. Comments sub-	NOTE: This form may not be used to request copies of documents, nor to request waivers, or clarification of requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.						
I RECOMMEND A CHANGE:	1. DOCUMENT NUMBER MIL-PRF-19500/501C	2. DOCUMENT DATE (YYMMDD) 970523					
3. DOCUMENT TITLE SEMICONDUCTOR DEVICE, DARLINGTON TO	RANSISTOR, PNP, SILICON, POWER, TYPE 2N60	051, 2N6052 JAN, JANTX AND JANTXV					
4. NATURE OF CHANGE (Identify paragraph n	number and include proposed rewrite, if possible	. Attach extra sheets as needed.)					

6. SUBMITTER a. NAME (Last, First, Middle initial) b. ORGANIZATION c. ADDRESS (Include Zip Code) d. TELEPHONE (Include Area Code) 7. DATE SUBMITTED (YYMMDD) (1) Commercial (2) AUTOVON (If applicable) 8. PREPARING ACTIVITY b. TELEPHONE (Include Area Code) a. NAME Alan Barone (2) AÚTOVON (1) Commercial (614) 692-0510 850-0510 IF YOU DO NOT RECEIVE A REPLY WITHIN 45 DAYS, CONTACT: c. ADDRESS (Include Zip Code) Defense

5. REASON FOR RECOMMENDATION

Supply Center Columbus, ATTN: DSCC-VAT,

3990 East Broad Street, Columbus, OH

43216-5000

Telephone (703) 756-2340 AUTOVON 289-2340

Defense Quality and Standardization Office

5203 Leesburg Pike, Suite 1403, Falls Church, VA 22041-3466