

HM70

High Power Shielded Low Profile Surface Mount Inductors

Electrical / Environmental

Operating Temperature Range

Temperature Rise, Maximum

-40°C to +180°C 50°C

BI 50	100
033	
USS)4

Specifications												
Part	@ O Adc		1V DC		R ⁽¹⁾ ιΩ)	I _{rated} ⁽²⁾ @ 25°C (Adc)	Heating ⁽³⁾ Current (Adc)	Core Loss ⁽⁴⁾ Factor				
Number	Typ.	Min.	Typ.	Typ.	Max.	(====)	@∆50°C	K1	K2	Fig.		
HM70-101R0	1.00	0.63	0.70	2.53	2.90	16	15	9.07E-11	86.721	1		
HM70-201R3	1.33	0.93	1.16	3.38	3.74	16	13	1.24E-10	79.134	1		
HM70-201R9	1.94	1.28	1.60	4.71	5.42	12	11	1.24E-10	95.591	1		
HM70-25R80	0.83	0.488	0.61	1.75	2.01	18	19	1.29E-10	68.630	1		
HM70-301R5	1.50	0.80	1.00	2.16	2.48	16	17	1.33E-10	97.919	1		
HM70-302R0	2.10	1.12	1.40	3.48	4.00	12	14	1.33E-10	113.246	1		
HM70-401R2	1.25	0.92	1.02	1.75	1.80	34	22	2.12E-10	72.072	2		
HM70-401R6	1.68	1.15	1.44	2.13	2.36	20	20	2.12E-10	76.245	2		
HM70-50R70	0.70	0.40	0.52	1.05	1.26	30	31	2.85E-10	42.602	2		
HM70-501R2	1.20	0.80	0.90	1.68	2.00	24	25	2.85E-10	53.556	2		

Notes: (1) DC Resistance measured at 25°C

(2) The rated current (I_{rated}) is the current at which the inductance will be decreased by 20% from its initial (zero DC) value.

(3) The heating current is the DC current, which causes the component temperature to increase by approximately 50°C. This current is determined by soldering the component on a typical application PCB, and then apply the current to the device for 30 minutes.

(4) Core Loss approximation is based on published core data: Core Loss (Pfe) = K1 * (f)^{1.338} * (K2 Δ I)^{2.2546}

Where: core loss = in watt f = frequency in kHz

K1 and K2 = core loss factor

 $\Delta I = delta I$ across the component in Amp.

 $K2\Delta I$ = one half of the peak to peak flux density across the component in Gauss

