New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

2N5133

- LOW NOISE -NF = 1.5 dB (TYP) @ 1.0 kHz
- HIGH GAIN - h_{FE} = 60 (MIN), 220 (TYP) @ 1.0 mA h_{FE} = 50 (TYP) @ 50 μ A
- BREAKDOWN VOLTAGE -- LV_{CEO} = 18 VOLTS (MIN)

ABSOLUTE MAXIMUM RATINGS (Note 1)

Maximum Temperatures

Operating Junction Temperature 125°C Maximum
Storage Temperature -55°C to +125°C
Lead Temperature (Soldering, 10 second time limit) 260°C Maximum

Maximum Power Dissipation

Total Dissipation at 25 °C Case Temperature (Note 2) 0.5 Watt at 25 °C Ambient Temperature (Note 2) 0.2 Watt

Maximum Voltages and Current

	Boo and Garrent	
V_{CBO}	Collector to Base Voltage	20 Volts
V _{CEO}	Collector to Emitter Voltage (Note 3)	18 Volts
V _{EBO}	Emitter to Base Voltage	3.0 Volts

ELECTRICAL CHARACTERISTICS (25°C Free Air Temperature unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	TEST CONDITIONS	
h _{FE}	DC Current Gain	60	220	1000		$I_C = 1.0 \text{ mA}$	$V_{CF} = 5.0 \text{ V}$
h _{FE}	DC Current Gain		50			$I_C = 50 \mu\text{A}$	$V_{CF} = 10 \text{ V}$
h _{fe}	High Frequency Current Gain (f = 20 MHz)		1.3			$I_C = 50 \mu\text{A}$	$V_{CF} = 5.0 \text{ V}$
h _{fe}	High Frequency Current Gain (f = 20 MHz)	2.0		20		$I_C = 0.0 \mu\text{A}$ $I_C = 1.0 \text{mA}$	$V_{CE} = 5.0 \text{ V}$
NF	Narrow Band Noise Figure ($f = 1.0 \text{ kHz}$)		1.5		dB	$I_C = 30 \mu\text{A}$	$V_{CE} = 5.0 \text{ V}$
						PWR BW = 200 Hz	$R_S = 10 \text{ k}\Omega$
V _{CE} (sat)	Collector Saturation Voltage			0.4	Volts	$I_C = 1.0 \text{ mA}$	$I_{\rm g}=0.1~{\rm mA}$
СВО	Collector Cutoff Current			50	nA	$I_{\rm F} = 0$	$V_{CR} = 15 \text{ V}$
I _{CBO} (65°C)	Collector Cutoff Current			5.0	μ A	$I_E = 0$	$V_{CR} = 15 \text{ V}$
Ccb	Collector-Base Capacitance			5.0	pF	$I_c = 0$	$V_{CB} = 5.0 \text{ V}$
BV _{CBO}	Collector to Base Breakdown Voltage	20			Volts	$I_C = 100 \mu\text{A}$	$I_{\rm c}=0$
V _{CEO} (sust)	Collector to Emitter Sustaining Voltage (Notes 3 and 4)	18			Volts	$I_C = 3.0 \text{ mA}$	$I_R = 0$
BV _{EBO}	Emitter to Base Breakdown Voltage	3.0			Volts	$I_{\rm E} = 10 \mu \text{A}$	$I_{\rm C} = 0$
/ _{RE} (on)	Base to Emitter On Voltage			0.75	Volts	$I_C = 100 \mu\text{A}$	$V_{CF} = 5.0 \text{ V}$
l _{fe}	Small Signal Current Gain (f = 1.0 kHz)	50		1100	10113	$I_C = 1.0 \text{mA}$	$V_{CE} = 5.0 V$ $V_{CE} = 5.0 V$

*Planar is a patented Fairchild process.

NOTES:

- (1) These ratings are limiting values above which the serviceability of any individual semiconductor device may be impaired.
- (2) These ratings give a maximum junction temperature of 125°C and junction to case thermal resistance of 200°C/Watt (derating factor of 5.0 mW/°C); junction to ambient thermal resistance of 500°C/Watt (derating factor of 2.0 mW/°C).
- (3) Rating refers to a high-current point where collector to emitter voltage is lowest. For more information send for Fairchild Publication APP-4/2.
- (4) Pulse Conditions: length = 300 μ s; duty cycle = 1%.