

Clock Generator for PowerQUICC III

XC9850

The XC9850 is a PLL based clock generator specifically designed for Motorola Microprocessor And Microcontroller applications including the PowerQUICC III. This device generates a microprocessor input clock plus the 500 MHz Rapid I/O clock. The microprocessor clock is selectable in output frequency to any of the commonly used microprocessor input and bus frequencies. The Rapid I/O outputs are LVDS compatible. The device offers eight low skew clock outputs organized into two output banks, each configurable to support different clock frequencies. The extended temperature range of the XC9850 supports telecommunication and networking requirements.

Features

- 8 LVCMOS outputs for processor and other circuitry
- 2 differential LVDS outputs for Rapid I/O interface
- · Crystal oscillator or external reference input
- 25 or 33 MHz Input reference frequency
- Selectable output frequencies include = 200, 166, 133,125, 111, 100, 83, 66, 50, 33 or 16 MHz
- · Buffered reference clock output
- Rapid I/O (LVDS) Output = 500, 250 or 125 MHz
- Low cycle-to-cycle and period jitter
- 100-lead PBGA package
- 100-lead Pb-free Package Available
- 3.3V supply with 3.3V or 2.5V output LVCMOS drive
- Supports computing, networking, telecommunications applications
- Ambient temperature range –40°C to +85°C

Functional Description

The XC9850 uses either a 25 or 33 MHz reference frequency to generate 8 LVCMOS output clocks, of which, the frequency is selectable from 16 MHz to 200 MHz. The reference is applied to the input of a PLL and multiplied to 2 GHz. Output dividers, divide this frequency by 10, 12, 15, 16, 18, 20, 24, 30, 40, 60 or 120 to produce output frequencies of 200, 166, 133, 125, 111, 100, 83 66 50 33 or 16 MHz. The single-ended LVCMOS outputs are divided into two banks of 4 low skew outputs each, for use in driving a microprocessor or microcontroller clock input as well as other system components. The 2 GHz PLL output frequency is also divided to produce a 125, 250 or 500 MHz clock output for Rapid I/O applications such as found on the PowerQUICC III communications processor. The input reference, either crystal or external input is also buffered to a separate output that my be used as the clock source for a Gigabit Ethernet PHY if desired.

The reference clock may be provided by either an external clock input of 25 MHz or 33 MHz. An internal oscillator requiring a 25 MHz crystal for frequency control may also be used. The external clock source my be applied to either of two clock inputs and selected via the CLK_SEL control input. Both single ended LVCMOS and differential LVPECL inputs are available. The crystal oscillator or external clock input is selected via the input pin of REF_SEL. Other than the crystal, no external components are required for crystal oscillator operation. The REF_33MHz configuration pins is used to select between a 33 and 25 MHz input frequency.

The XC9850 is packaged in a 100 lead MAPBGA package to optimize both performance and board density.

MICROPROCESSOR CLOCK GENERATOR

VF SUFFIX VM SUFFIX (Pb-FREE) 100 MAPBGA PACKAGE CASE 1462-01

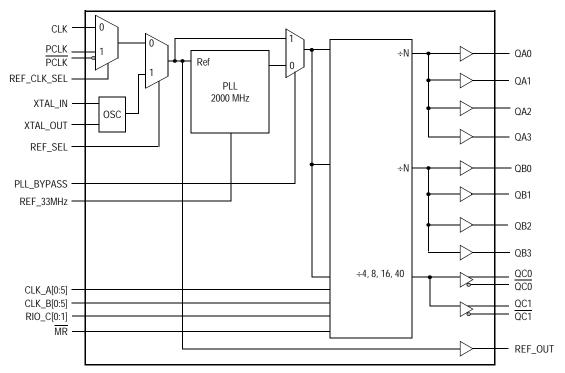


Figure 1. XC9850 Logic Diagram

Table 1. Pin Configurations

Pin	1/0	Туре	Function	Supply	Active/State
CLK	Input	LVCMOS	PLL Reference Clock Input (pull-down)	V_{DD}	
PCLK, PCLK	Input	LVPECL	PLL Reference Clock Input (PCLK - pull-down, PCLK - pull-up and pull-down)	V_{DD}	
QA0, QA1, QA2, QA3	Output	LVCMOS	Bank A Outputs	V_{DDOA}	
QB0, QB1, QB2, QB3	Output	LVCMOS	Bank B Outputs	V_{DDOB}	
QC0, QC1, QC0, QC1	Output	LVDS	Bank C Outputs	V_{DDOC}	
REF_OUT	Output	LVCMOS	Reference Output (25 MHz or 33 MHz)	V_{DD}	
XTAL_IN	Input	LVCMOS	Crystal Oscillator Input Pin	V_{DD}	
XTAL_OUT	Output	LVCMOS	Crystal Oscillator Output Pin	V_{DD}	
REF_CLK_SEL	Input	LVCMOS	Select between CLK and PCLK Input (pull-down)	V_{DD}	High
REF_SEL	Input	LVCMOS	Select between External Input and Crystal Oscillator Input (pull-down)	V_{DD}	High
REF_33MHz	Input	LVCMOS	Selects 33 MHz Input (pull-down)	V_{DD}	High
MR	Input	LVCMOS	Master Reset (pull-up)	V_{DD}	Low
PLL_BYPASS	Input	LVCMOS	Select PLL or static test mode (pull-down)	V_{DD}	High
CLK_A[0:5] ¹	Input	LVCMOS	Configures Bank A clock output frequency (pull-up)	V_{DD}	High
CLK_B[0:5] ²	Input	LVCMOS	Configures Bank B clock output frequency (pull-up)	V_{DD}	High
RIO_C [0:1]	Input	LVCMOS	Configures Bank C clock output frequency (pull-down)	V_{DD}	
V_{DD}			3.3 V Supply		
V_{DDA}			Analog Supply		
V_{DDOA}			Supply for Output Bank A		
V_{DDOB}			Supply for Output Bank B		
GND			Ground		

^{1.} PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)

^{2.} PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)
PowerPC bit ordering (bit 0 = msb, bit 1 = lsb)

Table 2. Function Table

Control	Default	0	1
REF_CLK_SEL	0	CLK	PCLK
REF_SEL	0	CLK or PCLK	XTAL
PLL_BYPASS	0	Normal	Bypass
REF_33MHz	0	Selects 25 MHz Reference	Selects 33 MHz Reference
MR	1	Reset	Normal

CLK_A, CLK_B, and RIO_C control output frequencies. See Table 3 and Table 4 for specific device configuration

Table 3. Output Configurations (Banks A & B)

CLK_x[0:5] ¹	CLK_x[0] (msb)	CLK_x[1]	CLK_x[2]	CLK_x[3]	CLK_x[4]	CLK_x[5] (lsb)	N	Frequency (MHz)
111111	1	1	1	1	1	1	126	15.87
111100	1	1	1	1	0	0	120	16.67
101000	1	0	1	0	0	0	80	25.00
011110	0	1	1	1	1	0	60	33.33
010100	0	1	0	1	0	0	40	50.00
001111	0	0	1	1	1	1	30	66.67
001100	0	0	1	1	0	0	24	83.33
001010	0	0	1	0	1	0	20	100.00
001001	0	0	1	0	0	1	18	111.11
001000	0	0	1	0	0	0	16	125.00
000111	0	0	0	1	1	1	15	133.33
000110	0	0	0	1	1	0	12	166.67
000101	0	0	0	1	0	1	10	200.00
000100	0	0	0	1	0	0	8 ²	250

^{1.} PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)

Table 4. Output Configurations (Bank C)

RIO_C[0:1]	Frequency (MHz)
00	50 (test output)
01	125
10	250
11	500

^{2.} Minimum value for N

OPERATION INFORMATION

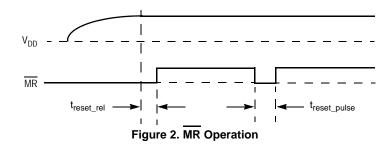
Output Frequency Configuration

The XC9850 was designed to provide the commonly used frequencies in PowerQUICC, PowerPC and other microprocessor systems. **Table 3** lists the configuration values that will generate those common frequencies. The XC9850 can generate numerous other frequencies that may be useful in specific applications. The output frequency (f_{out}) of either Bank A or Bank B may be calculated by the following equation.

$$f_{out} = 2000 / N$$

where f_{out} is in MHz and N = 2 * CLK_x[0:5]

This calculation is valid for all values of N from 8 to 126. Note that N=15 is a modified case of the configuration inputs


 $CLK_x[0:5]$. To achieve N = 15 $CLK_x[0:5]$ is configured to 00111 or 7.

Crystal Input Operation

TBD

Power-Up and MR Operation

Figure 2 defines the release time and the minimum pulse length for $\overline{\text{MR}}$ pin. The $\overline{\text{MR}}$ release time is based upon the power supply being stable and within V_{DD} specifications. See Table 11 for actual parameter values. The XC9850 may be configured after release of reset and the outputs will be stable for use after lock indication is obtained.

Power Supply Bypassing

The XC9850 is a mixed analog/digital product. The architecture of the XC9850 supports low noise signal operation at high frequencies. In order to maintain its superior signal quality, all $V_{\rm DD}$ pins should be bypassed by high-frequency ceramic capacitors connected to GND. If the spectral frequencies of the internally generated switching noise on the supply pins cross the series resonant point of an individual bypass capacitor, its overall impedance begins to look inductive and thus increases with increasing frequency. The parallel capacitor combination shown ensures that a low impedance path to ground exists for frequencies well above the noise bandwidth.

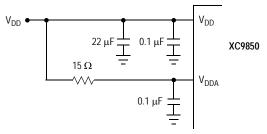


Figure 3. V_{CC} Power Supply Bypass

Table 5. Absolute Maximum Ratings¹

Symbol	Characteristics	Min	Max	Unit	Condition
V_{DD}	Supply Voltage (core)	-0.3	3.8	V	
V_{DDA}	Supply Voltage (Analog Supply Voltage)	-0.3	V _{DD}	V	
V_{DDOx}	Supply Voltage (LVCMOS output for Bank A or B)	-0.3	V _{DD}	V	
V _{IN}	DC Input Voltage	-0.3	V _{DD} +0.3	V	
V _{OUT}	DC Output Voltage ²	-0.3	V _{DDx} +0.3	V	
I _{IN}	DC Input Current		±20	mA	
I _{OUT}	DC Output Current		±50	mA	
T _S	Storage Temperature	-65	125	°C	

Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not
implied.

Table 6. General Specifications

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
V _{TT}	Output Termination Voltage		V _{DD} ÷ 2		V	
MM	ESD Protection (Machine Model)	125			V	
HBM	ESD Protection (Human Body Model)	2000			V	
CDM	ESD Protection (Charged Device Model)	500			V	
LU	Latch-Up Immunity	100			mA	
C _{IN}	Input Capacitance		4		pF	Inputs
C _{PD}	Power Dissipation Capacitance		10		pF	Per Output
θ_{JA}	Thermal Resistance (junction-to-ambient)		54.5		°C/W	Air flow = 0
T _A	Ambient Temperature	-40		85	°C	

Table 7. DC Characteristics $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$

Symbol	Characteristics	Min	Тур	Max	Unit	Condition				
Supply Cur	Supply Current for V_{DD} = 3.3 V \pm 5%, V_{DDOA} = 3.3 V \pm 5 and V_{DDOB} = 3.3 V \pm 5%									
I _{DD} + I _{DDA}	Maximum Quiescent Supply Current (Core)		200	mA	V _{DD} + V _{DDA} pins					
I _{DDA}	Maximum Quiescent Supply Current (Analog Supply)			15	mA	V _{DDIN} pins				
I _{DDOA} , I _{DDOB}	Maximum Bank A and B Supply Current			175	mA	V _{DDOA} and V _{DDOB} pins				
Supply Cur	rent for V_{DD} = 3.3 V \pm 5%, V_{DDOA} = 2.5 V \pm 5% and V_{DDOB} =	2.5 V ± 5%								
I _{DD} + I _{DDA}	Maximum Quiescent Supply Current (Core)			200	mA	V _{DD} + V _{DDA} pins				
I _{DDA}	Maximum Quiescent Supply Current (Analog Supply)			15	mA	V _{DDIN} pins				
I _{DDOA} , I _{DDOB}	Maximum Bank A and B Supply Current			100	mA	V _{DDOA} and V _{DDOB} pins				

^{2.} V_{DDx} references power supply pin associated with specific output pin.

Clock Generator for PowerQUICC III

Table 8. LVDS DC Characteristics ($T_A = -40$ °C to 85°C)

Symbol	Characteristics	Min	Тур	Max	Unit	Condition			
Differential LVDS Clock Outputs (QC0, $\overline{\text{QC0}}$ and QC1, $\overline{\text{QC1}}$) for V_{DD} = 3.3 V \pm 5%									
V _{PP}	Output Differential Voltage ¹ (peak-to-peak) (LVDS)		100		400	mV			
Vos	Output Offset Voltage	(LVDS)	1050		1600	mV			

^{1.} V_{PP} is the minimum differential input voltage swing required to maintain AC characteristics including t_{PD} and device-to-device skew.

Table 9. LVPECL DC Characteristics $(T_A = -40^{\circ}C \text{ to } 85^{\circ}C)^1$

Symbol	Characteristics	Min	Тур	Max	Unit	Condition			
Differential LVPECL Clock Inputs (CLK1, $\overline{\text{CLK1}}$) for V _{DD} = 3.3 V \pm 0.5%									
V _{PP}	PP Differential Voltage ² (peak-to-peak) (LVPECL)					mV			
V _{CMR}	Differential Input Crosspoint Voltage ³	(LVPECL)	1.0		V _{DD} – 0.6	V			

^{1.} AC characteristics are design targets and pending characterization.

Table 10. LVCMOS I/O DC Characteristics ($T_A = -40$ °C to 85°C)

Symbol	Characteristics	Min	Тур	Max	Unit	Condition				
LVCMOS f	LVCMOS for V_{DD} = 3.3 V \pm 5%									
V _{IH}	Input High Voltage	2.0		V _{DD} + 0.3	V	LVCMOS				
V _{IL}	Input Low Voltage			0.8	V	LVCMOS				
I _{IN}	Input Current ¹			± 200	μΑ	$V_{IN} = V_{DDL}$ or GND				
LVCMOS f	LVCMOS for V _{DD} = 3.3 V $\pm 5\%$, V _{DDOA} = 3.3 V ± 5 and V _{DDOB} = 3.3 V $\pm 5\%$									
V _{OH}	Output High Voltage	2.4			V	I _{OH} = -24 mA				
V _{OL}	Output Low Voltage			0.5	V	I _{OL} = 24 mA				
Z _{OUT}	Output Impedance		14 – 17		Ω					
LVCMOS f	or V _{DD} = 3.3 V \pm 5%, V _{DDOA} = 2.5 V \pm 5% and V _{DDOB} = 2.5 \	/ ± 5%								
V _{OH}	Output High Voltage	1.9			V	I _{OH} = -15 mA				
V _{OL}	Output Low Voltage			0.4	V	I _{OL} = 15 mA				
Z _{OUT}	Output Impedance		18 – 22		Ω					

^{1.} Inputs have pull-down resistors affecting the input current.

^{2.} V_{PP} is the minimum differential input voltage swing required to maintain AC characteristics including t_{PD} and device-to-device skew.

V_{CMR} (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V_{CMR} (AC) range
and the input swing lies within the V_{PP} (AC) specification. Violation of V_{CMR} (AC) or V_{PP} (AC) impacts the device propagation delay, device and
part-to-part skew.

Table 11. AC Characteristics ($V_{DD} = 3.3 \text{ V} \pm 5\%$, $V_{DDOA} = 3.3 \text{ V} \pm 5\%$, $V_{DDOB} = 3.3 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$)^{1 2}

Symbol	Characteristics	Min	Тур	Max	Unit	Condition
Input and Outp	out Timing Specification	•		•	•	-
f _{ref}	Input Reference Frequency (25 MHz input) Input Reference Frequency (33 MHz input) XTAL Input Input Reference Frequency in PLL Bypass Mode ³		25 33 25	250	MHz MHz MHz MHz	PLL bypass
f _{VCO}	VCO Frequency Range ⁴		2000		MHz	
f _{MCX}	Output Frequency Bank A output Bank B output Bank C output	15.87		200 200 500	MHz MHz MHz	PLL locked
f _{refPW}	Reference Input Pulse Width	2			ns	
f _{refCcc}	Input Frequency Accuracy			100	ppm	
t _r , t _f	Output Rise/Fall Time	150		500	ns	20% to 80%
DC	Output Duty Cycle	43 47	50 50	57 53	%	Bank A and B Bank C
PLL Specificati	ions	•	•	•		-
t _{LOCK}	Maximum PLL Lock Time			10	ms	
t _{reset_ref}	MR Hold Time on Power Up	10			ns	
t _{reset_pulse}	MR Hold Time	10			ns	
Skew and Jitte	r Specifications	•	•		•	
t _{sk(O)}	Output-to-Output Skew (within a bank)			50	ps	
t _{sk(O)}	Output-to-Output Skew (across banks A and B)			400	ps	$V_{DDOA} = 3.3 \text{ V}$ $V_{DDOB} = 3.3 \text{ V}$
t _{JIT(CC)}	Cycle-to-Cycle Jitter			200 150	ps ps	Bank A and B Bank C
t _{JIT(PER)}	Period Jitter			200	ps	Bank A and C
t _{JIT(∅)}	I/O Phase Jitter RMS (1 σ)			50	ps	Bank A and C

- 1. AC characteristics are design targets and pending characterization.
- 2. AC characteristics apply for parallel output termination of 50Ω to V_{TT} .
- 3. In bypass mode, the XC9850 divides the input reference clock.
- 4. The input reference frequency must match the VCO lock range divided by the total feedback divider ratio: $f_{ref} = (f_{VCO} \div M) \cdot N$.

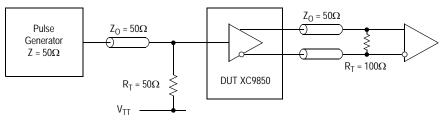


Figure 4. XC9850 AC Test Reference (LVDS Outputs)

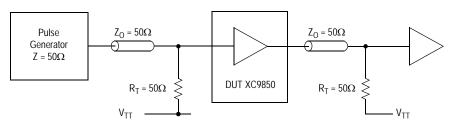
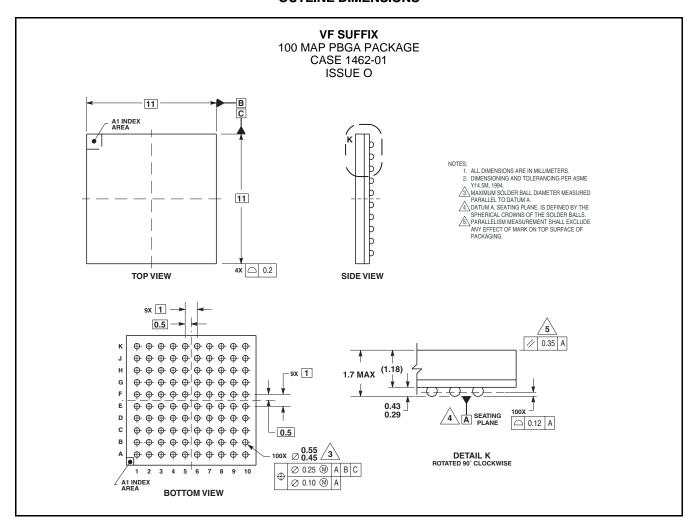


Figure 5. XC9850 AC Test Reference (LVCMOS Outputs)


Table 12. XC9850 Pin Diagram (Top View)

	1	2	3	4	5	6	7	8	9	10
Α	V_{DDOB}	V_{DDOB}	CLKA[1]	CLKA[3]	CLKA[5]	V_{DD}	QA1	QA2	V_{DDOB}	V_{DDOB}
В	V_{DDOB}	V_{DDOB}	CLKA[0]	CLKA[2]	CLKA[4]	QA0	V_{DD}	QA3	V_{DDOB}	V_{DDOB}
С	RSVD	RSVD	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	REF_OUT
D	V_{DDA}	V_{DDA}	V_{DD}	GND	GND	GND	GND	V_{DD}	QC0	QC0
Е	REF_SEL	CLK	V_{DD}	GND	GND	GND	GND	V_{DD}	V_{DD}	GND
F	PCLK	PCLK	V_{DD}	GND	GND	GND	GND	V_{DD}	QC1	QC1
G	REF_CLK_SEL	REF_33MHz	V_{DD}	GND	GND	GND	GND	V_{DD}	PLL_BYPASS	MR
н	XTAL_IN	XTAL_OUT	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	V_{DD}	RIO_C[1]	RIO_C[0]
J	V_{DDOB}	V_{DDOB}	CLKB[0]	CLKB[2]	CLKB[4]	QB0	V_{DDOB}	QB3	V_{DDOB}	V_{DDOB}
κ	V_{DDOB}	$V_{\rm DDOB}$	CLKB[1]	CLKB[3]	CLKB[5]	V_{DDOB}	QB1	QB2	$V_{\rm DDOB}$	V _{DDOB}

Table 13. XC9850 Pin List

Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA	Signal	100 Pin MAPBGA
V_{DDOB}	A1	RSVD	C1	REF_SEL	E1	REF_CLK_SEL	G1	V_{DDOB}	J1
V_{DDOB}	A2	RSVD	C2	CLK	E2	REF_33MHz	G2	V_{DDOB}	J2
CLKA[1]	A3	V_{DD}	C3	V_{DD}	E3	V_{DD}	G3	CLKB[0]	J3
CLKA[3]	A4	V_{DD}	C4	GND	E4	GND	G4	CLKB[2]	J4
CLKA[5]	A5	V_{DD}	C5	GND	E5	GND	G5	CLKB[4]	J5
V_{DD}	A6	V_{DD}	C6	GND	E6	GND	G6	QB0	J6
QA1	A7	V_{DD}	C7	GND	E7	GND	G7	V_{DDOB}	J7
QA2	A8	V_{DD}	C8	V_{DD}	E8	V_{DD}	G8	QB3	J8
V_{DDOB}	A9	V_{DD}	C9	V_{DD}	E9	PLL_BYPASS	G9	V_{DDOB}	J9
V_{DDOB}	A10	REF_OUT	C10	GND	E10	MR	G10	V_{DDOB}	J10
V_{DDOB}	B1	V_{DDA}	D1	PCLK	F1	XTAL_IN	H1	V_{DDOB}	K1
V_{DDOB}	B2	V_{DDA}	D2	PCLK	F2	XTAL_OUT	H2	V_{DDOB}	K2
CLKA[0]	В3	V_{DD}	D3	V_{DD}	F3	V_{DD}	H3	CLKB[1]	K3
CLKA[2]	B4	GND	D4	GND	F4	V_{DD}	H4	CLKB[3]	K4
CLKA[4]	B5	GND	D5	GND	F5	V_{DD}	H5	CLKB[5]	K5
QA0	B6	GND	D6	GND	F6	V_{DD}	H6	V_{DD}	K6
V_{DDOA}	В7	GND	D7	GND	F7	V _{DD}	H7	QB1	K7
QA3	B8	V_{DD}	D8	V_{DD}	F8	V _{DD}	H8	QB2	K8
V_{DDOB}	B9	QC0	D9	QC1	F9	RIO_C[1]	H9	V _{DDOB}	K9
V_{DDOB}	B10	QC0	D10	QC1	F10	RIO_C[0]	H10	V _{DDOB}	K10

OUTLINE DIMENSIONS

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339

