

MiniSKiiP[®]3

3-phase bridge inverter

SKiiP 38AC12T4V1

Features

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

- Inverter up to 41 kVA
- Typical motor power 22 kW

Remarks

- •
- V_{CEsat} , V_{F} = chip level value Case temp. limited to T_{C} = 125°C • max. (for baseplateless modules $T_{\rm C} = T_{\rm S}$)
- product rel. results valid for $T_{i} \le 150$ (recomm. $T_{op} = -40$... +150°C)
- For short circuit: Soft R_{Goff} recommended

Absolute Maximum Ratings $T_s = 25 \text{ °C}$, unless otherwise specified									
Symbol	Conditions			Values					
IGBT									
V _{CES}	T _j = 25 °C			1200	V				
I _C	T _j = 175 °C	T _c = 25 °C		115	А				
		T _c = 70 °C		93	А				
I _{CRM}	$I_{CRM} = 3 \times I_{Cnom}$			300	А				
V _{GES}				±20	V				
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; VCES < 1200 V	T _j = 150 °C		10	μs				
Inverse	Diode								
I _F	T _j = 175 °C	T _c = 25 °C		99	А				
		T _c = 70 °C		79	А				
I _{FRM}	$I_{CRM} = 3 \times I_{Cnom}$			300	А				
I _{FSM}	t _p = 10 ms; sin	T _j = 150 °C		548	А				
Module									
I _{t(RMS)}				160	А				
T _{vj}				-40+150	°C				
T _{stg}				-40+125	°C				
V _{isol}	AC, 1 min.			2500	V				

Characteristics T _s = 25				25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 4 \text{ mA}$		5	5,8	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,3	mA	
V _{CE0}		T _j = 25 °C		0,8	0,9	V	
		T _j = 150 °C		0,7	0,8	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10	11	mΩ	
		T _j = 150°C		15	16	mΩ	
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,8	2	V	
		T _j = 150°C _{chiplev.}		2,2	2,4	V	
C _{ies}				6,2		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,41		nF	
C _{res}				0,35		nF	
Q_{G}	V _{GE} = -8+15V			565		nC	
R _{Gint}	T _j = 25 °C			7,5		Ω	
t _{d(on)}				160		ns	
t _r	R _{Gon} = 1 Ω	V _{CC} = 600V		45		ns	
E _{on}	di/dt = 2080 A/µs	I _C = 100A		13,7		mJ	
t _{d(off)}	R _{Goff} = 1 Ω	T _j = 150 °C		395		ns	
t _f	di/dt = 1240 A/µs	$V_{GE} = \pm 15V$		73		ns	
E _{off}				9,7		mJ	
R _{th(j-s)}	per IGBT			0,48		K/W	

MiniSKiiP[®]3

3-phase bridge inverter

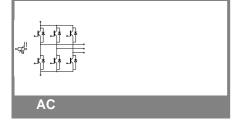
SKiiP 38AC12T4V1

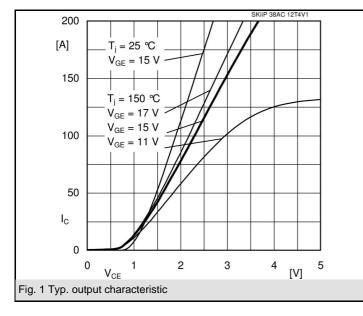
	Characteristics						
L	Symbol	Conditions		min.	typ.	max.	Units
L	Inverse Diode						
	$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 15 V	T _j = 25 °C _{chiplev.}		2,2	2,5	V
			T _j = 150 °C _{chiplev.}		2,1	2,45	V
	V _{F0}		T _j = 25 °C		1,3	1,5	V
			T _j = 150 °C		0,9	1,1	V
	r _F		T _j = 25 °C		9	10	mΩ
			T _j = 150 °C		12	13,5	mΩ
	I _{RRM}	I _F = 100 A	T _i = 125 °C		112		А
	Q _{rr}	di/dt = 2680 A/µs			16		μC
	E _{rr}	$V_{GE} = \pm 15V$			6,5		mJ
	R _{th(j-s)}	per diode			0,66		K/W
	M _s	to heat sink		2		2,5	Nm
	w				95		g
	Temperature sensor						
	R _{ts}	3%, Tr = 25°C			1000		Ω
	R _{ts}	3%, Tr = 100°C			1670		Ω

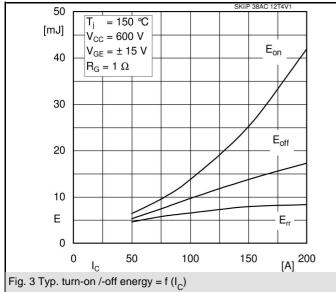
Features

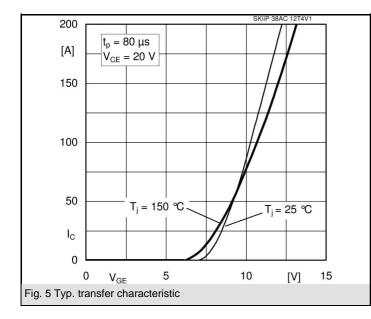
- Trench 4 IGBT's
- Robust and soft freewheeling . diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

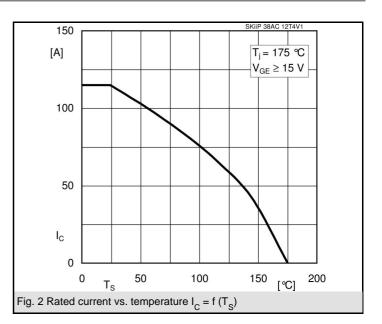
Typical Applications


- Inverter up to 41 kVA
- Typical motor power 22 kW


Remarks


- V_{CEsat} , V_{F} = chip level value Case temp. limited to T_{C} = 125°C max. (for baseplateless modules $T_{\rm C} = T_{\rm S}$
- product rel. results valid for $T_{j} \le 150$ (recomm. $T_{op} = -40$... +150°C)
- For short circuit: Soft R_{Goff} recommended


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

