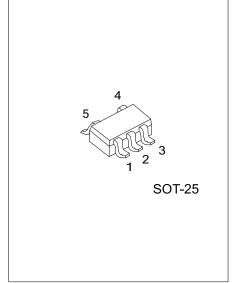


UNISONIC TECHNOLOGIES CO., LTD

CMOS IC Preliminary

ULTRA-LOW-NOISE, HIGH-SPEED, LOW-DROPOUT, **300mA LINEAR REGULATOR**

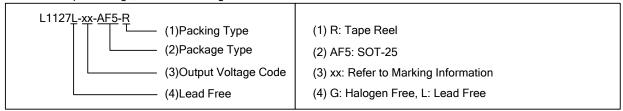

DESCRIPTION

As a low dropout linear regulator, the UTC L1127 only needs low input voltage (2.5~6V), and can deliver current to 300mA for setting the output voltage.

The UTC L1127 is ideal for being used in such battery-powered equipments notebook, personal computer and mother board. Its typical dropout voltage is 200mV at loading current 300mA.

L1127 has 1.0V, 1.2V, 1.5V, 1.8V, 2.5V, 3.0V, 3.3V, 4.2V, 4.75V, 5.2V fixed voltage versions and 0.8V to 5.5V adjustable voltage versions.

To protect itself against current over-loads and over temperature, the L1127 has short current limit and thermal shutdown functions.

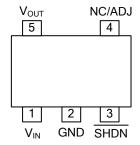

FEATURES

- * Operating Voltage: 2.5V~6V
- * Low Voltage Dropout
- * Output Current Guaranteed 300mA
- * For Setting Output Voltage Two Modes
- Fixed mode: 1.0V,1.2V,1.5V,1.8V,2.5V,3.0V,3.3V,4.2V,4.75V,5.2V
- ADJ mode: Adjustable Output Voltage 0.8V~5.5V
- * Internal Current Limit Protection
- * With Soft-Start
- * Internal Thermal Protection
- * Work Stably with Low ESR Ceramics Capacitor

ORDERING INFORMATION

Ordering	Number	Doolsons	Packing	
Lead Free	Halogen Free	Package		
L1127L-xx-AF5-R	L1127G-xx-AF5-R	SOT-25	Tape Reel	

Note: xx: Output Voltage, refer to Marking Information.

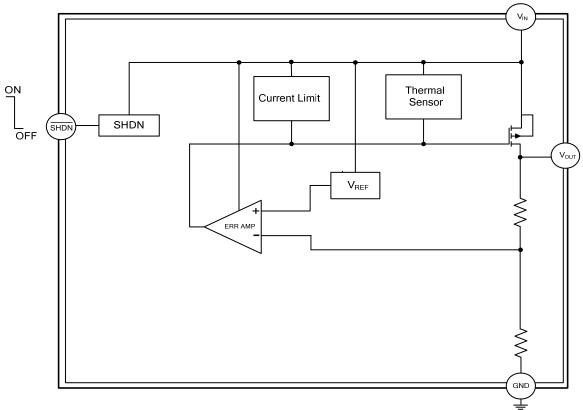


www.unisonic.com.tw 1 of 5

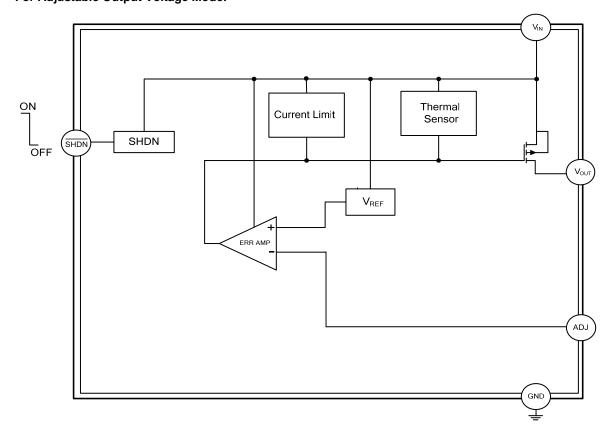
■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-25	45: 4.5V	SJXX G: Halogen Free L: Lead Free Voltage Code 1 2 3

■ PIN CONFIGURATION



■ PIN DESCRIPTION


NO.	PIN NAME	I/O	DESCRIPTION
1	V_{IN}		Voltage supply
2	GND		Ground
3	SHDN	I	Control pin for shutdown; logic high: enable ;logic low: shutdown
	NC.		
4	ADJ		This pin is connected to an external resistor divider, turns to adjustable output voltage mode operation.
5	V_{OUT}	0	Output pin

■ BLOCK DIAGRAM

For Fixed Output Voltage Mode:

For Adjustable Output Voltage Mode:

ABSOLUTE MAXIMUM RATING

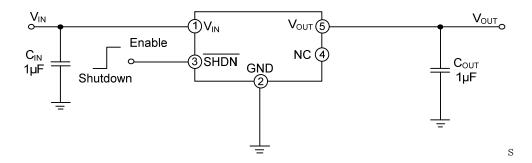
PARAMETER	SYMBOL	RATINGS	UNIT
V _{IN} Supply Voltage (V _{IN} to GND)	V _{IN}	+6.5	V
SHDN Input Voltage (SHDN to GND)	$V_{\overline{SHDN}}$	-0.3 ~ +6.5	V
Power Dissipation	P_{D}	400	mW
Junction Temperature	T_J	+125	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged.

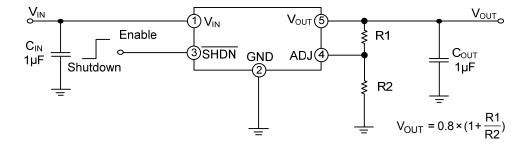
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
V _{IN} Supply Voltage	V_{IN}	2.5 ~ 6	V
Output Voltage	V _{OUT}	0.8 ~ 5.5	V
V _{OUT} Output Current	I _{OUT}	0 ~ 300	mA
Operating Temperature	T _{OPR}	-40 ~ +85	°C


■ ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT} + 0.5V \text{ (min } V_{IN} = 2.5V), I_{OUT} = 0 \sim 300 \text{mA}, C_{IN} = 1 \mu\text{F}, C_{OUT} = 1 \mu\text{F}, T_A = 25 °\text{C}, unless otherwise specified)}$


(VIN - VOUL O.5 V (11111 VIN - 2.5 V), 1001 - 0		$\frac{\mathbf{S}_{[N]}}{\mathbf{S}_{[N]}}$	000 0111	CIVVIOC	орсонк	, u
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Voltage		$V_{IN} = V_{OUT} + 0.5V,$	98%x		102%x	
- Cutput voltage		1mA <u><</u> I _{OUT} <u><</u> 300mA	V_{OUT}		V_{OUT}	٧
Input Voltage	V _{IN}		2.5		6	V
Line Regulation	REGLINE	$V_{OUT}+0.5V \le V_{IN} \le 6V, I_{OUT}=10 \text{mA}$			0.06	%/V
Load Regulation	REG _{LOAD}	$V_{IN} = V_{OUT} + 0.5V$, $1 \text{mA} \leq I_{OUT} \leq 300 \text{mA}$			0.6	%/A
Reference Voltage	V_{REF}	$V_{IN} = V_{OUT} + 0.5V$, $1mA \le I_{OUT} \le 300mA$	0.784	0.8	0.816	V
Maximum Output Current	I _{OUT(MAX)}	$V_{IN}=V_{OUT}+0.5V$, $V_{OUT}=0.98xV_{OUT}$	300	400		mA
Quiescent Current	IQ	I _{OUT} =10mA ~300mA		60	90	μΑ
		$V_{OUT} = 1.0V, I_{OUT} = 300mA$		1400	1500	300 000 000 mV
		$V_{OUT} = 1.2V, I_{OUT} = 300mA$		1200	1300	
		$V_{OUT} = 1.5V, I_{OUT} = 300mA$		900	1000	
Dropout Voltage	V _D	V _{OUT} = 1.8V, I _{OUT} = 300mA		600	700	
		V _{OUT} =2.5V,2.8V,3.3V,4.2V,		170	300	
		I _{OUT} = 300mA		170	300	
		V _{OUT} =4.75V and 5.2V, I _{OUT} =300mA		140	300	
Power Supply Ripple Rejection Ratio	PSRR	f = 10kHz, I _{OUT} = 300mA		45		dB
Short Current Limit	I _{SHORT}	$V_{OUT} = 0V$		50		mA
Shutdown Threshold	V _{IH}		1.5		6	V
Shataown Threshold	V _{IL}		0		0.4	V
Shutdown Supply Current	I _{OFF}	\overline{SHDN} = Low, V_{IN} = V_{OUT} +0.5 V		0.1	1	μΑ
Soft Start Time	T _{SS}			50		μs
RMS Output Noise	V _{NOISE}	T _A =25°C, 10Hz ≤ f ≤100kHz, V _{OUT} = 0.8V		60		μV _{RMS}
V _{OUT} Discharge MOSFET R _{DS(ON)}		SHDN = low		60		Ω
SHDN Pull Down Resistance				3		МΩ
Output Voltage Temperature Coefficient		T _J = -40°C~85°C		<u>+</u> 100		ppm/°C
Thermal Shutdown Temperature	T _{SHDN}			165		°C
Thermal Shutdown Hysteresis	DT _{SHDN}			30		°C
-		-				

■ TYPICAL APPLICATION CIRCUITS

For Fixed Output Voltage Mode:

For Adjustable Output Voltage Mode:

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.