IN74HCT241A

Octal 3-State Noninverting Buffer/Line Driver/Line Receiver
 High-Performance Silicon-Gate CMOS

The IN74HCT241A is identical in pinout to the LS/ALS241. The IN74HCT241A may be used as a level converter for interfacing TTL or NMOS outputs to High Speed CMOS inputs.

This octal noninverting buffer/line driver/line receiver is designed to be used with 3 -state memory address drivers, clock drivers, and other bus-oriented systems. The device has noninverting outputs and two output enables. Enable A is active-low and Enable B is active-high.

- TTL/NMOS Compatible Input Levels
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 4.5 to 5.5 V
- Low Input Current: $1.0 \mu \mathrm{~A}$

ORDERING INFORMATION
IN74HCT241AN Plastic IN74HCT241ADW SOIC
$\mathrm{T}_{\mathrm{A}}=-55^{\circ}$ to $125^{\circ} \mathrm{C}$ for all packages

LOGIC DIAGRAM

PIN 20 $=\mathrm{V}_{\mathrm{CC}}$
PIN $10=$ GND

FUNCTION TABLE

Inputs		Output	Inputs		Output
Enable A	A	YA	Enable B	B	YB
L	L	L	H	L	L
L	H	H	H	H	H
H	X	Z	L	X	Z

[^0]
MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IN }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {OUT }}$	DC Output Current, per Pin	± 35	mA
$\mathrm{I}_{\text {CC }}$	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	$\begin{aligned} & 750 \\ & 500 \end{aligned}$	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

+ Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: : $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	4.5	5.5	V
$\mathrm{~V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 1)	0	500	ns

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\mathrm{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
				$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ -55^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \leq 85 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$	
$\mathrm{V}_{\text {IH }}$	Minimum HighLevel Input Voltage	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\text {OuT }}=\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{array} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{array}{\|l} \hline \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \\ \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V
V_{OH}	Minimum HighLevel Output Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 6.0 \mathrm{~mA} \end{aligned}$	4.5	3.98	3.84	3.7	
$\mathrm{V}_{\text {OL }}$	Maximum LowLevel Output Voltage	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{array} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUTT }}\right\| \leq 6.0 \mathrm{~mA} \end{aligned}$	4.5	0.26	0.33	0.4	
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
I_{Oz}	Maximum three State Leakage Current	Output in High-Impedance State $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ or GND	5.5	± 0.5	± 5.0	± 10.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	5.5	4.0	40	160	$\mu \mathrm{A}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Additional Quiescent Supply Current	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}$, Any One Input $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND, Other Inputs $\mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A}$	5.5	$\geq-55^{\circ}$ 2.9		$\begin{gathered} 25^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \\ \hline 2.4 \end{gathered}$	mA

NOTE: Total Supply Current $=\mathrm{I}_{\mathrm{CC}}+\sum \Delta \mathrm{I}_{\mathrm{CC}}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

Symbol	Parameter	Guaranteed Limit			
		$25^{\circ} \mathrm{C}$ to $-55^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	Unit
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Maximum Propagation Delay, A to YA or B to YB (Figures 1 and 3)	23	29	35	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Maximum Propagation Delay, Output Enable to YA or YB (Figures 2 and 4)	30	38	45	ns
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\mathrm{PZL}}$	Maximum Propagation Delay, Output Enable to YA or YB (Figures 2 and 4)	26	33	39	ns
$\mathrm{t}_{\mathrm{TLH}}, \mathrm{t}_{\mathrm{THL}}$	Maximum Output Transition Time, Any Output (Figures 1 and 3)	12	15	18	ns
C_{IN}	Maximum Input Capacitance	10	10	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Maximum Three-State Output Capacitance (Output in High-Impedance State)	15	15	15	pF

C_{PD}	Power Dissipation Capacitance (Per Enable Output)	Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ Used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{2} \mathrm{f}+\mathrm{I}_{\mathrm{CC}} \mathrm{V}_{\mathrm{CC}}$	55
	pF		

Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

Figure 3. Test Circuit

EXPANDED LOGIC DIAGRAM

(1/4 of the Device)

N SUFFIX PLASTIC DIP (MS - 001AD)

20

NOTES:

| $\phi \mid 0.25(0.010)(M)$ | T |
| :--- | :--- | :--- |

1. Dimensions "A", "B" do not include mold flash or protrusions.

Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	24.89	26.92
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC

(MS - 013AC)

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	12.6	13
\mathbf{B}	7.4	7.6
\mathbf{C}	2.35	2.65
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	9.53	
\mathbf{J}	0°	80°
\mathbf{K}	0.1	0.3
\mathbf{M}	0.23	0.32
\mathbf{P}	10	10.65
\mathbf{R}	0.25	0.75

[^0]: X = don't care
 $\mathrm{Z}=$ high impedance

