SANYO Semiconductors ## DATA SHEET An ON Semiconductor Company # LV5725JA — #### **Bi-CMOS LSI** ## **Step-down Switching Regulator** #### Overview The LV5725JA is a step-down voltage switching regulator. #### **Functions** • Wide input dynamic range: 4.5V to 50V. - Current mode type. - Built-in pulse-by-pulse OCP circuit: detection is on resistance of an external MOS. - Over current protection: HICCUP mode. • Thermal shutdown. • Load-independent soft start circuit - ON/OFF pin - Synchronous operation by external signal. - Power good pin - External voltage is usable when output voltage is high. #### **Specifications** #### **Absolute Maximum Ratings** at Ta = 25°C | | Parameter | Symbol | Conditions | Ratings | Unit | |---------------------|---|---------------------|---------------------------------|----------------------|------| | Supply voltage | | V _{IN} max | | 55 | V | | | V _{IN} , SW, OUT, PGOOD | | | 55 | V | | | HDRV, CBOOT | | | 61 | V | | voltage | LDRV | | | 6.0 | V | | pi | Between CBOOT to SW Between CBOOT to HDRV | | | 6.0 | V | | Allowable | EN, ILIM | | | V _{IN} +0.3 | ٧ | | Moll | Between V _{IN} to ILIM | | | 1.0 | V | | _ | V _{DD} | | | 6.0 | V | | | SS, FB, COMP,RT, SYNC | | | V _{DD} +0.3 | V | | Allo | owable Power dissipation | Pd max | Mounted on a specified board. * | 1.45 | W | | Ор | erating temperature | Topr | | -40 to +85 | °C | | Storage temperature | | Tstg | | -55 to +150 | °C | Continued on next page. - Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment. The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for new introduction or other application different from current conditions on the usage of automotive device, communication device, office equipment, industrial equipment etc., please consult with us about usage condition (temperature, operation time etc.) prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use. - Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. #### SANYO Semiconductor Co., Ltd. http://semicon.sanyo.com/en/network #### **LV5725JA** Continued from preceding page. | Parameter | Symbol | Conditions | Ratings | Unit | |------------------------------|--------|------------|---------|------| | Maximum junction temperature | Tj max | | 150 | °C | ^{*} Specified board : 58.0mm × 78.0mm × 1.6mm, fiberglass epoxy printed board. Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details. #### **Recommended Operating Range** at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |-------------------------------|-----------------|------------|-----------|------| | Supply voltage range | VIN | | 4.5 to 50 | V | | Error amplifier input voltage | V _{FB} | | 0 to 1.6 | V | | Oscillatory frequency | Fosc | | 50 to 500 | kHz | #### **Electrical Characteristics** at Ta = 25°C, $V_{IN} = 12V$ | Daniel | 0 | O contillation | | Ratings | | Unit | | |--|-------------------------|--|-----------------------|---------|----------|---------------|--| | Parameter | Symbol | Conditions | min | typ | max | Unit | | | Reference voltage block | Reference voltage block | | | | | | | | Internal reference voltage | Vref | Including offset of E/A | 0.698 | 0.708 | 0.718 | V | | | 5V power supply | V_{DD} | I _{OUT} = 0 to 5mA | 4.7 | 5.2 | 5.7 | V | | | Triangular waveform oscillator block | | | | | | | | | Oscillation frequency | Fosc | RT= 56kΩ | 317 | 365 | 412 | kHz | | | Frequency variation | Fosc dv | V _{IN} = 4.5 to 50V | | 1 | | % | | | Fold back detection voltage | VOSC FB | After power is supplied to SS, voltage is detected FB. | | 0.5 | | V | | | Fold back oscillation frequency | FOSC FB | RT= $56k\Omega$, $V_{FB} = 0V$ | 100 | 130 | 160 | kHz | | | ON/OFF circuit block | | | | | | | | | IC start-up voltage | V _{EN} on | | - | 2.5 | 3.0 | V | | | Hysteresis of startup voltage | V _{EN} hys | | 0.3 | 0.6 | - | V | | | Soft start circuit block | | | | | | | | | Soft start source current | I _{SS} SC | EN > 3.0V | 4 | 5 | 6 | μА | | | Soft start sink current | I _{SS} SK | EN < 1V, V _{DD} = 5V | | 2 | | mA | | | Soft start end voltage | V _{SS} END | | 0.7 | 0.9 | 1.1 | V | | | UVLO circuit block | • | | | • | | | | | UVLO voltage | V _{UVLO} | | 3.7 | 4.0 | 4.3 | V | | | Hysteresis of UVLO | V _{UVLO} H | | | 0.3 | | V | | | Error amplifier | | | | | | | | | Input bias current | IEA IN | | | | 100 | nA | | | Error amplifier gain | G _{EA} | | 1000 | 1400 | 1800 | μ A /V | | | Range of common-mode input voltage | V _{EA R} | V _{IN} = 4.5 to 50V | 0 | | 1.6 | V | | | Output sink current | IEA OSK | FB = 1.0V | | -100 | | μА | | | Output source current | IEA OSC | FB = 0V | | 100 | | μА | | | Current detection amplifier gain | GISNS | | | 2.4 | | | | | Over current limiter circuit block | • | | | • | | | | | Reference current | I _{LIM} | | -10% | 20 | +10% | μА | | | Over current detection comparator offset voltage | V _{LIM_} OFS | | -5 | | +5 | mV | | | Range of over current detection comparator common mode input | V _{LIM_CM} | | V _{IN} -0.45 | | V_{IN} | V | | | PWM comparator | | - | | | | | | | Input threshold voltage | Vt max | Duty cycle = D _{MAX} , SW = V _{IN} | 1.15 | 1.25 | 1.35 | V | | | | Vt0 | Duty cycle = 0%, SW = V _{IN} | 0.5 | 0.6 | 0.7 | V | | | Maximum ON duty | D _{MAX} | | 92 | | | % | | Continued on next page. Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time. Continued from preceding page. | | | 0 88 | | Ratings | | | |--|------------------------|--------------------------------|-----|---------|-----|------| | Parameter | Symbol | Conditions | min | typ | max | Unit | | Power good | | | | | | | | Power good "L" sink current | IpgL | PGOOD = 5V | | 5 | | mA | | Power good "H" sink current | I _{PG} H | PGOOD = 5V | | | 1 | μΑ | | Power good voltage | PGthresh | When FB voltage rises | | 0.612 | | V | | Hysteresis of power good | PG _{hys} | | | 12 | | mV | | Output block | | | | | | | | High side output ON resistance (upper) | R _{ONH} _HIGH | CBOOT – HDRV = -0.1V | | 12 | | Ω | | High side output ON resistance (lower) | R _{ONL} HIGH | HDRV – SW = +0.1V | | 3.3 | | Ω | | Low side output ON resistance (upper) | R _{ONH} LOW | V _{DD} – LDRV = -0.1V | | 7.9 | | Ω | | Low side output ON resistance (lower) | R _{ONL} LOW | LDRV – GND = +0.1V | | 3.8 | | Ω | | High side output ON current (upper) | I _{ONH} _HIGH | CBOOT – HDRV = -4.5V | 160 | | | mA | | High side output ON current (lower) | I _{ONL} HIGH | HDRV – SW = +4.5V | 330 | | | mA | | Low side output ON current (upper) | I _{ONH} _LOW | V _{DD} – LDRV = -5.2V | 190 | | | mA | | Low side output ON current (lower) | I _{ONL} LOW | LDRV – GND = +5.2V | 250 | | | mA | | Entire device | • | · | | | | | | Standby current | Iccs | EN < 1V | | | 1 | μА | | Average current consumption | ICCA | EN > 3.0V | | 2.5 | | mA | ## **Package Dimensions** unit : mm (typ) 3178B #### **Block Diagram** #### Sample application circuit ### **Pin Assignment** #### **Pin Function** | Pin No. | Pin name | Description | |---------|-----------------|--| | 1 | COMP | Error amplifier output pin. Make sure to connect a phase compensation network between COMP and GND. | | 2 | RT | Oscillating frequency setting pin. Make sure to connect a resistor between this pin and GND. | | 3 | SYNC | External synchronous signal input pin. | | 4 | PGOOD | Power good pin. | | 5 | EN | ON/OFF pin. | | 6 | SW | This pin is connected to switching node. Connect the source of Nch MOSFET to this pin. | | 7 | СВООТ | Bootstrap capacitor connected pin. This pin is used as gate driving power supply for external Nch MOSFET. Make sure to connect a capacitor between CBOOT and SW. | | 8 | HDRV | External upper MOSFET gate driving pin. | | 9 | LDRV | External lower MOSFET gate driving pin. | | 10 | OUT | Internal regulator power supply pin. This pin is connected to V _{OUT} . | | 11 | V_{DD} | Power supply pin for gate drive of the external lower MOS-FET. | | 12 | GND | Ground pin. GND pin voltage is the reference for each reference voltage. | | 13 | V _{IN} | Power supply pin. This pin is monitored by UVLO function. When the voltage of this pin becomes higher than 4.3V by UVLO function, the IC starts up and mode shifts to soft start operation. | | 14 | ILIM | Reference current pin for current detection. The inlet current of approx. 20µA flows into this pin. Connect a resistor externally between this pin and VIN and when the voltage supplied to SW pin is lower than the pin voltage of this resistor, the upper Nch MOSFET is turned off by current limiter comparator. This operation is reset at every PWM pulse. | | 15 | SS/HICCUP | Capacitor connection pin for soft start. This pin enables to charge the soft start capacitor by 5µA. (approx) When this pin turns approx. 0.9V, soft start period ends and frequency fold back function is activated. | | 16 | FB | Error amplifier reverse input pin. Converter operates to set this pin to 0.708V. The output voltage divided by the external resistance is applied to this pin. After soft start, frequency fold back function operates when the voltage of this pin becomes 0.5V or lower. And oscillating frequency decreases together with FB voltage. | ## LV5725JA ## I/O pin equivalent circuit chart | Pin No. | Pin No. | Equivalent Circuit | |---------|---------|--| | 1 | СОМР | VDD (1) $2k\Omega$ COMP (1) 400Ω $1k\Omega$ GND (2) | | 2 | RT | V _{DD} (1) 10kΩ RT (2) SOOΩ GND (12) | | 3 | SYNC | V _{DD} (1) SYNC (3) SYNC (3) GND (12) | | 4 | PGOOD | PGOOD (4) PGOOD (2) IND IND IND IND IND IND IND IN | | 5 | EN | V _{DD} (1) FN (5) 462kΩ 365kΩ 650kΩ \$ GND (12) | | 6 | SW | CBOOT 7 VIN (13) SW (6) GND (12) | Continued on next page. Continued from preceding page. | Pin No. | Pin No. | Equivalent Circuit | |---------|----------------------|---| | 7 | СВООТ | V _{DD} (1) | | 8 | LDRV | CBOOT (7) HDRV (8) SW (6) GND (12) | | 9 | HDRV | VDD (1) LDRV (9) GND (2) | | 10 | OUT | V _{IN} (3) OUT (10) V _{DD} (1) GND (12) | | 11 | V _{DD} | VIN (3) VDD (1) GND (2) | | 12, 13 | GND, V _{IN} | VIN (13) | | 14 | ILIM | VIN (3) ILIM (4) GND (2) | Continued on next page. Continued from preceding page. - SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein. - Regarding monolithic semiconductors, if you should intend to use this IC continuously under high temperature, high current, high voltage, or drastic temperature change, even if it is used within the range of absolute maximum ratings or operating conditions, there is a possibility of decrease reliability. Please contact us for a confirmation. - SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. - In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law. - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd. - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use. - Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. This catalog provides information as of May, 2012. Specifications and information herein are subject to change without notice.