High-Speed, Low RoN, SPDT Analog Switch
 (2:1 Multiplexer/Demultiplexer Bus Switch)

DESCRIPTION

The DG3157 is a high-speed single-pole double-throw, low power, TTL-Compatible bus switch. Using sub-micro CMOS technology, the DG3157 achieves low on-resistance and negligible propagation delay.

The DG3157 can handle both analog and digital signals and permits signals with amplitudes of $u p$ to $V_{C C}$ to be transmitted in either direction.

When the Select pin is low, B_{0} is connected to the output A pin. When the Select pin is high, B_{1} is connected to the output A pin. The path that is open will have a highimpedance state with respect to the output. Make-beforebreak is guaranteed. An eptiaxial layer prevents latch-up.

FEATURES

- Halogen-free According to IEC 61249-2-21
- Direct cross to industry standard SN74LVC1G3157, NC7SB3157, NLASB3175, PI5A3157, and STG3157
- SC-70 6-lead package

RoHS COMPLIANT halogen FREE

- 1.65 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ operation
- 5Ω connection between ports
- Minimal propagation delay
- Break-before-make switching
- Zero bounce in flow-through mode

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Device Marking: G1

TRUTH TABLE	
Logic Input (S)	Function
0	$\mathrm{~B}_{0}$ Connected to A
1	$\mathrm{~B}_{1}$ Connected to A

ORDERING INFORMATION			
Temp. Range	Package	Part Number	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SC-70-6	DG3157DL-T1-E3 DG3157DL-T1-GE3 (Halogen-free)	

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Reference V+ to GND		-0.3 to +6	V
S, A, B ${ }^{\text {a }}$		-0.3 to (V++0.3)	
Continuous Current (Any terminal)		± 50	mA
Peak Current (Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle)		± 200	
Storage Temperature	D Suffix	-65 to 150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	6 -Pin SC-70 ${ }^{\text {c }}$	250	mW

Notes:

a. Signals on A , or B or S exceeding $\mathrm{V}+$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

SPECIFICATIONS									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}+=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0.25 \mathrm{~V}$ to $0.7 \mathrm{~V}+{ }^{\mathrm{e}}$		Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit	
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$			
Power Supply									
Power Supply Range	V+				Full	1.65		5.5	V
Quiescent Supply Current	I+	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=$	= V+ or GND	Room Full			$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$	
AC Electrical Characteristice									
Prop Delay Time ${ }^{\text {f }}$	$\mathrm{t}_{\text {PHL }} / t_{\text {PLH }}$	$\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}$	$\mathrm{V}+=1.65$ to 1.95 V	Full				ns	
			$\mathrm{V}+=2.3$ to 2.7 V	Full		1.2			
			$\mathrm{V}+=3.0$ to 3.6 V	Full		0.8			
			$\mathrm{V}+=4.5$ to 5.5 V	Full		0.3			
Output Enable Time ${ }^{\text {f }}$	$\mathrm{t}_{\text {PZL }} / \mathrm{t}_{\text {PZH }}$	$\begin{aligned} & V_{\text {LOAD }}=2 \times V+\text { for } t_{P Z L} \\ & V_{\text {LOAD }}=0 V \text { for } t_{P Z H} \end{aligned}$	$\mathrm{V}+=1.65$ to 1.95 V	Room Full		$\begin{aligned} & 10.2 \\ & 10.4 \end{aligned}$			
			$\mathrm{V}+=2.3$ to 2.7 V	Room Full		5.9			
			$\mathrm{V}+=3.0$ to 3.6 V	Room Full		4.1			
			$\mathrm{V}+=4.5$ to 5.5 V	Room Full		$\begin{aligned} & 2.6 \\ & 2.9 \end{aligned}$			
Output Disable Time ${ }^{\text {f }}$	$t_{\text {PLZ }} / t_{\text {PHZ }}$	$\begin{aligned} & V_{\text {LOAD }}=2 \times V+\text { for } t_{P L Z} \\ & V_{\text {LOAD }}=0 V \text { for } t_{P H Z} \end{aligned}$	$\mathrm{V}+=1.65$ to 1.95 V	$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$		$\begin{aligned} & 10.2 \\ & 10.4 \end{aligned}$			
			$\mathrm{V}+=2.3$ to 2.7 V	Room Full		$\begin{aligned} & 5.9 \\ & 6.2 \end{aligned}$			
			$\mathrm{V}+=3.0$ to 3.6 V	Room Full		$\begin{aligned} & 4.1 \\ & 4.5 \end{aligned}$			
			$\mathrm{V}+=4.5$ to 5.5 V	$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$		$\begin{aligned} & 2.6 \\ & 2.9 \end{aligned}$			
Break-Before-Make Time ${ }^{\text {d }}$	$\mathrm{t}_{\text {BBM }}$	$\mathrm{V}+=1.65$ to 1.95 V		Full	0.5				
		$\mathrm{V}+=2.3$ to 2.7 V		Full	0.5				
		$\mathrm{V}+=3.0$ to 3.65		Full	0.5				
		$\mathrm{V}+=4.5$ to 5.5 V		Full	0.5				
Charge Injection ${ }^{\text {d }}$	Q	$\begin{gathered} \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{nF}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{gathered}$	$\mathrm{V}+=5 \mathrm{~V}$	Room		7		pC	
			$\mathrm{V}+=3.3 \mathrm{~V}$	Room		3			
Analog Switch Characteristics									
Off Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=10 \mathrm{MHz}$		Room		- 57.6		dB	
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$			Room		-58.7			
-3 db Bandwidth ${ }^{\text {d }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		Room		> 250		MHz	
Capacitance									
Control Pin Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}+=0 \mathrm{~V}$		Room		4.9		pF	
B Port Off Capacitance ${ }^{\text {d }}$	$\mathrm{ClO}_{\text {IO-B }}$	$\mathrm{V}+=5 \mathrm{~V}$		Room		<6.5			
A Port Capacitance When Switch Enable ${ }^{\text {d }}$	$\mathrm{ClO}_{\text {IO-A(on) }}$			Room		< 18.5			

Notes

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
c. Typical values are for design aid only, not guaranteed nor subject to production testing.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
f. Guaranteed by design and not production tested. The bus switch propagation delay is a function of the RC time constant contributed by the on-resistance and the specified load capacitance with an ideal voltage source (zero output impedance) driving the switch.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Figure 1.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$R_{\text {ON }}$ vs. $V_{\text {A }}$ vs. V_{+}

AC LOADING AND WAVEFORMS

Figure 2. AC Test Circuit

Figure 3. AC Waveforms

Notes:

- C_{L} includes probe and jig capacitance.
- Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
- Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
- The outputs are measured one at a time with one transition per measurement.
- $t_{\text {PLZ }}$ and $t_{\text {PHZ }}$ are the same as $t_{\text {dis }}$.
- $t_{\text {PZL }}$ and $t_{\text {PZH }}$ are the same as $t_{\text {dis }}$.
- $t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {dis }}$.
- $\mathrm{V}_{\mathrm{LD}}=2 \mathrm{~V}+$.

TEST CIRCUITS

Figure 5. Charge Injection

Figure 6. Off-Isolation

Figure 7. Channel Off/On Capacitance

[^0]SC-70: 6-LEADS

Dim	MILLIMETERS			INCHES			
	Min	Nom	Max	Min	Nom	Max	
A	0.90	-	1.10	0.035	-	0.043	
$\mathbf{A}_{\mathbf{1}}$	-	-	0.10	-	-	0.004	
$\mathbf{A}_{\mathbf{2}}$	0.80	-	1.00	0.031	-	0.039	
b	0.15	-	0.30	0.006	-	0.012	
C	0.10	-	0.25	0.004	-	0.010	
D	1.80	2.00	2.20	0.071	0.079	0.087	
E	1.80	2.10	2.40	0.071	0.083	0.094	
$\mathbf{E}_{\mathbf{1}}$	1.15	1.25	1.35	0.045	0.049	0.053	
e	0.65 BSC						
$\mathbf{e}_{\mathbf{1}}$	1.20	1.30	1.40	0.026 BSC			
L	0.10	0.20	0.30	0.004	0.051	0.055	
$\mathbf{\alpha}$	7° Nom						
ECN: S-03946-Rev. B, 09-Jul-01 DWG: 5550	0.012						

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?72648

