MC74VHC1G50

Buffer

The MC74VHC1G50 is an advanced high speed CMOS buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation.

The internal circuit is composed of three stages, including a buffered output which provides high noise immunity and stable output.

The MC74VHC1G50 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74VHC1G50 to be used to interface 5.0 V circuits to 3.0 V circuits.

- High Speed: $\mathrm{t}_{\mathrm{PD}}=3.5 \mathrm{~ns}(\mathrm{Typ})$ at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Low Power Dissipation: $\mathrm{I}_{\mathrm{CC}}=1 \mu \mathrm{~A}(\mathrm{Max})$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Pin and Function Compatible with Other Standard Logic Families
- Chip Complexity: FET = 104; Equivalent Gate $=26$

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor ${ }^{\text {² }}$

http://onsemi.com

Pin 1
d = Date Code

PIN ASSIGNMENT	
1	NC
2	IN A
3	GND
4	OUT Y
5	V CC

FUNCTION TABLE

A Input	Y Output
L	L
H	H

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS (Note 1)

Symbol	Characteristics	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage	-0.5 to +7.0	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage $\quad$$\mathrm{V}_{\mathrm{CC}}=0$ High or Low State	$\begin{gathered} -0.5 \text { to } 7.0 \\ -0.5 \text { to } V_{C C}+0.5 \end{gathered}$	V
IIK	Input Diode Current	-20	mA
$\mathrm{l}_{\text {OK }}$	Output Diode Current $\quad \mathrm{V}_{\text {OUT }}$ < GND; $\mathrm{V}_{\text {OUT }}>\mathrm{V}_{\text {CC }}$	+20	mA
lout	DC Output Current, per Pin	+25	mA
ICC	DC Supply Current, $\mathrm{V}_{\text {CC }}$ and GND	+50	mA
P_{D}	Power dissipation in still air SC-88A, TSOP-5	200	mW
$\theta_{\text {JA }}$	Thermal resistance SC-88A, TSOP-5	333	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{L}	Lead temperature, 1 mm from case for 10 s	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction temperature under bias	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {ESD }}$	ESD Withstand Voltage Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	$\begin{gathered} >2000 \\ >200 \\ \text { N/A } \end{gathered}$	V
ILatch-Up	Latch-Up Performance Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ (Note 5)	± 500	mA

1. Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions.
2. Tested to EIA/JESD22-A114-A
3. Tested to EIA/JESD22-A115-A
4. Tested to JESD22-C101-A
5. Tested to EIA/JESD78

RECOMMENDED OPERATING CONDITIONS

Symbol	Characteristics	Min	Max	Unit
V_{CC}	DC Supply Voltage	2.0	5.5	V
$\mathrm{~V}_{\text {IN }}$	DC Input Voltage	0.0	5.5	V
$\mathrm{~V}_{\text {OUT }}$	DC Output Voltage	0.0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time		0	100
		$\mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\mathrm{~ns} / \mathrm{V}$	

DEVICE JUNCTION TEMPERATURE VERSUS

TIME TO 0.1\% BOND FAILURES

Junction Temperature ${ }^{\circ} \mathbf{C}$	Time, Hours	Time, Years
80	$1,032,200$	117.8
90	419,300	47.9
100	178,700	20.4
110	79,600	9.4
120	37,000	4.2
130	17,800	2.0
140	8,900	1.0

Figure 3. Failure Rate vs. Time Junction Temperature

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
V_{IH}	Minimum High-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$			$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		$\begin{gathered} 1.5 \\ 2.1 \\ 3.15 \\ 3.85 \end{gathered}$		V
VIL	Maximum Low-Level Input Voltage		$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$			$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V
V_{OH}	Minimum High-Level Output Voltage$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 1.9 \\ & 2.9 \\ & 4.4 \end{aligned}$		1.9 2.9 4.4		V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 2.58 \\ & 3.94 \end{aligned}$			$\begin{aligned} & 2.48 \\ & 3.80 \end{aligned}$		$\begin{aligned} & 2.34 \\ & 3.66 \end{aligned}$		V
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=50 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$			$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$		$\begin{aligned} & 0.52 \\ & 0.52 \end{aligned}$	V
I_{IN}	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	$\begin{aligned} & 0 \text { to } \\ & 5.5 \end{aligned}$			± 0.1		± 1.0		± 1.0	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	5.5			1.0		20		40	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\mathrm{C}_{\text {load }}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$

Symbol	Parameter	Test Conditions		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		$-55 \leq \mathrm{T}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$		Unit
				Min	Typ	Max	Min	Max	Min	Max	
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL } \end{aligned}$	Maximum Propagation Delay, Input A to Y	$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 4.5 \\ & 6.4 \end{aligned}$	$\begin{gathered} 7.1 \\ 10.6 \end{gathered}$		$\begin{gathered} 8.5 \\ 12.0 \end{gathered}$		$\begin{aligned} & 10.0 \\ & 14.5 \end{aligned}$	ns
		$\mathrm{V}_{C C}=5.0 \pm 0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$		$\begin{aligned} & 6.5 \\ & 8.5 \end{aligned}$		$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance				4	10		10		10	pF

| | | Typical @ 25 |
| :--- | :--- | :---: | :---: |
| $\mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$ | | |
| | Power Dissipation Capacitance (Note 6) | pF |

6. $C_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{C C(O P R)}=C_{P D} \bullet V_{C C} \bullet f_{i n}+I_{C C} . C_{P D}$ is used to determine the no-load dynamic power consumption; $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \bullet \mathrm{V}_{\mathrm{CC}}{ }^{2} \bullet \mathrm{f}_{\mathrm{in}}+\mathrm{I}_{\mathrm{CC}} \bullet \mathrm{V}_{\mathrm{CC}}$.

MC74VHC1G50

Figure 4. Switching Waveforms

Figure 5. Test Circuit

DEVICE ORDERING INFORMATION

	Device Nomenclature						Package Type	Tape and Reel Size
Device Order Number	Circuit Indicator	Temp Range Identifier	Technology	Device Function	Package Suffix	Tape \& Reel Suffix		
MC74VHC1G50DFT1	MC	74	VHC1G	50	DF	T1	$\begin{aligned} & \hline \text { SC-88A/ / } \\ & \text { SOT-353 } \\ & \text { /SC-70 } \end{aligned}$	$\begin{aligned} & 178 \text { mm (7") } \\ & 3000 \text { Unit } \end{aligned}$
MC74VHC1G50DFT2	MC	74	VHC1G	50	DF	T2	$\begin{aligned} & \text { SC-88A/ } \\ & \text { SOT-353 } \\ & / \text { SC-70 } \end{aligned}$	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$
MC74VHC1G50DTT1	MC	74	VHC1G	50	DT	T1	TSOPS / SOT-23 / SC-59	$\begin{aligned} & 178 \mathrm{~mm}\left(7^{\prime \prime}\right) \\ & 3000 \text { Unit } \end{aligned}$

MC74VHC1G50

Figure 6. Tape Ends for Finished Goods

Figure 7. SC-70-5/SC-88A/SOT-353 DFT1 Reel Configuration/Orientation

Figure 8. SC-70/SC-88A/SOT-353 DFT2 and SOT23-5/TSOP-5/SC59-5 DTT1 Reel Configuration/Orientation

Figure 9. Reel Dimensions

REEL DIMENSIONS

Tape Size	T and R Suffix	A Max	\mathbf{G}	t Max
8 mm	$\mathrm{~T} 1, \mathrm{~T} 2$	178 mm $(7 \mathrm{in})$	$8.4 \mathrm{~mm},+1.5 \mathrm{~mm},-0.0$ $(0.33 \mathrm{in}+0.059 \mathrm{in},-0.00)$	14.4 mm
		$0.56 \mathrm{in})$		

Figure 10. Reel Winding Direction

MC74VHC1G50

PACKAGE DIMENSIONS

SC-88A / SOT-353 / SC-70
 DF SUFFIX
 5-LEAD PACKAGE
 CASE 419A-02
 ISSUE F

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.071	0.087	1.80	2.20		
B	0.045	0.053	1.15	1.35		
C	0.031	0.043	0.80	1.10		
D	0.004	0.012	0.10			
G	0.026 BSC		0.65			
B	--		0.004	---		0.10
J	0.004	0.010	0.10	0.25		
K	0.004	0.012	0.10			
N	0.008		REF	0.20		REF
S	0.079		0.087	2.00		2.20

MC74VHC1G50

PACKAGE DIMENSIONS

TSOP-5 / SOT-23 / SC-59
 DT SUFFIX
 5-LEAD PACKAGE CASE 483-01

ISSUE B

DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982
CONTROLING DIMENSION: MILIMETER
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	2.90	3.10	0.1142	0.1220
B	1.30	1.70	0.0512	0.0669
C	0.90	1.10	0.0354	0.0433
D	0.25	0.50	0.0098	0.0197
G	0.85	1.05	0.0335	0.0413
H	0.013	0.100	0.0005	0.0040
J	0.10	0.26	0.0040	0.0102
K	0.20	0.60	0.0079	0.0236
L	1.25	1.55	0.0493	0.0610
M	0	10°	0°	10°
S	2.50	3.00	0.0985	0.1181

Abstract

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and al liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

