

LS303 MONOLITHIC DUAL NPN TRANSISTOR

Linear Systems High Voltage Super-Beta Monolithic Dual NPN

The LS303 is a monolithic pair of high voltage Super-Beta NPN transistors mounted in a single P-DIP package. The monolithic dual chip design reduces parasitics and gives better performance while ensuring extremely tight matching.

The 8 Pin P-DIP provides ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

LS303 Features:

- Very high gain
- Tight matching
- Low Output Capacitance

FEATURES							
HIGH GAIN	h _{FE} ≥ 2000 @ 1μA TYP.						
LOW OUTPUT CAPACITANCE	C _{OBO} ≤ 2.0pF						
TIGHT V _{BE} MATCHING	$ V_{BE1} - V_{BE2} = 0.2 \text{mV TYP}.$						
HIGH f _t	100MHz						
ABSOLUTE MAXIMUM RATINGS ¹							
@ 25°C (unless otherwise noted)							
Maximum Temperatures							
Storage Temperature	-65°C to +200°C						
Operating Junction Temperature	-55°C to +150°C						
Maximum Power Dissipation							
Continuous Power Dissipation (One side)	250mW						
Continuous Power Dissipation (Both sides	s) 500mW						
Linear Derating factor (One side)	2.3mW/°C						
Linear Derating factor (Both sides)	4.3mW/°C						
Maximum Currents							
Collector Current	5mA						

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
V _{BE1} - V _{BE2}	Base Emitter Voltage Differential		0.2	1	mV	$I_{C} = 10 \mu A, V_{CE} = 5 V$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential		1	5	μV/°C	$I_C = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature					T _A = -55°C to +125°C
I _{B1} - I _{B2}	Base Current Differential	-	0.5	1.5	nA	$I_C = 10 \mu A, V_{CE} = 5 V$
h _{FE1} /h _{FE2}	DC Current Gain Differential		5		%	$I_C = 10 \mu A, V_{CE} = 5 V$

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	10		1	V	I _C = 10μΑ, I _E = 0
BV _{CEO}	Collector to Emitter Voltage	10			٧	$I_{C} = 10 \mu A$, $I_{B} = 0$
BV_{EBO}	Emitter-Base Breakdown Voltage	6.2			٧	$I_E = 10 \mu A, I_C = 0^2$
BV_{CCO}	Collector to Collector Voltage	100			٧	$I_{C} = 10 \mu A, I_{E} = 0$
			2000			$I_{C} = 1\mu A, V_{CE} = 5V$
h _{FE}	DC Current Gain	2000				$I_C = 10 \mu A, V_{CE} = 5 V$
			2000			$I_C = 500 \mu A, V_{CE} = 5 V$
V _{CE} (SAT)	Collector Saturation Voltage			0.5	V	I _C = 1mA, I _B = 0.1mA
I _{EBO}	Emitter Cutoff Current			0.2	pА	$I_{C} = 0, V_{EB} = 3V$
I _{CBO}	Collector Cutoff Current			100	рА	$I_E = 0, V_{CB} = 5V$
C _{OBO}	Output Capacitance			2	pF	$I_{E} = 0, V_{EB} = 1V$
C _{C1C2}	Collector to Collector Capacitance			2	pF	V _{CC} = 0V
I _{C1C2}	Collector to Collector Leakage Current			0.5	nA	$V_{CC} = \pm 20V$
f_T	Current Gain Bandwidth Product	100			MHz	$I_C = 200 \mu A, V_{CE} = 5 V$
NF	Narrow Band Noise Figure			3	dB	$I_C = 10\mu A$, $V_{CE} = 3V$, BW=200Hz, $R_G = 10K\Omega$,
						f = 1KHz

Notes

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10µA.

Available Packages:

LS303 in P-DIP

LS303 available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

8 C2 7 B2 1 3 6 E2

P-DIP (Top View)

N/C4 5 N/C