4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM #### **DESCRIPTION** The M5M5V408B is a family of low voltage 4-Mbit static RAMs organized as 524,288-words by 8-bit, fabricated by Mitsubishi's high-performance 0.25 μ m CMOS technology. The M5M5V408B is suitable for memory applications where a simple interfacing, battery operating and battery backup are the important design objectives. M5M5V408B is packaged in 32-pin plastic SOP, 32-pin plastic TSOP and 32-pin 8mm x 13.4mm STSOP packages. Two types of TSOPs and two types of STSOPs are available, M5M5V408BTP (normal-lead-bend TSOP), M5M5V408BRT (reverse-lead-bend TSOP), M5M5V408BKV (normal-lead-bend STSOP) and M5M5V408BKR (reverse-lead-bend STSOP). These two types TSOPs and two types STSOPs are suitable for a surface mounting on double-sided printed circuit boards. From the point of operating temperature, the family is divided into three versions; "Standard", "W-version", and "I-version". Those are summarized in the part name table below. ## **FEATURES** - Single +2.7~+3.6V power supply - Small stand-by current: 0.3µA(3V,typ.) - · No clocks, No refresh - Data retention supply voltage=2.0V to 3.6V - All inputs and outputs are TTL compatible. - ullet Easy memory expansion by $\overline{\mathsf{S}}$ - Common Data I/O - Three-state outputs: OR-tie capability - OE prevents data contention in the I/O bus - Process technology: 0.25µm CMOS - · Package: M5M5V408BFP: 32 pin 525 mil SOP M5M5V408BTP/RT: 32 PIN 400mil TSOP(II) M5M5V408BKV/KR: 32 pin 8mm x13.4mm STSOP #### PART NAME TABLE | Version, | Part name | Power | Access | Star | nd-by c | urrent I | CC(PD), | Vcc=3. | 0V | Active | |-------------|---------------------------|-------------|--------|---------|---------|----------|---------|--------|-------|-----------------| | Operating | (## stands for "FP","TP", | Supply | time | typ | ical * | R | atings | (max.) | | current
lcc1 | | temperature | "RT","KV"or"KR") | Сарріу | max. | 25°C | 40°C | 25°C | 40°C | 70°C | 85°C | (3.0V, typ.) | | | M5M5V408B## -70L | 27 201 | 70ns | | | | | 204 | | | | Standard | M5M5V408B## -85L | 2.7 ~ 3.6V | 85ns | | | | | 30µA | | | | 0 ~ +70°C | M5M5V408B## -70H | 2.7 ~ 3.6V | 70ns | 0.3µA | 1µA | 1µA | 3µA | 15µA | | | | | M5M5V408B## -85H | 2.7 ~ 0.0 V | 85ns | σ.ομ, ι | | | - p | | | 20 1 | | | M5M5V408B## -70LW | 2.7 ~ 3.6V | 70ns | | | | | 30µA | | 30mA
(10MHz) | | W-version | M5M5V408B## -85LW | | 85ns | | | | | | 60µA | (10111112) | | -20 ~ +85°C | M5M5V408B## -70HW | 27 201 | 70ns | 0 2 | | 1μΑ 1μΑ | 1μΑ 3μΑ | 15µA | 204 | 5mA | | | M5M5V408B## -85HW | 2.7 ~ 3.6V | 85ns | 0.3µA | ΤμΑ | | | | 30µA | (1MHz) | | | M5M5V408B## -70LI | 0.7. 0.01/ | 70ns | | | | | 30µA | | | | I-version | M5M5V408B## -85LI | 2.7 ~ 3.6V | 85ns | | | | | | 60µA | | | -40 ~ +85°C | M5M5V408B## -70HI | 27 261/ | 70ns | 0.3µA | 1µA | 1µA | 3µA | 15µA | 30µA | | | | M5M5V408B## -85HI | 2.7 ~ 3.6V | 85ns | υ.ομ. | ΙμΛ | ΙμΑ | Ιυμπ | ΙΙΟμΛ | Ιουμπ | | ^{* &}quot;typical" parameter is sampled, not 100% tested. ### 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM #### **PIN CONFIGURATION (TOP VIEW)** | Pin | Function | |----------------|---------------------| | A0 ~ A18 | Address input | | DQ1 ~ DQ8 | Data input / output | | S | Chip select input | | \overline{W} | Write control input | | ŌĒ | Output inable input | | Vcc | Power supply | | GND | Ground supply | Outline 32P2M-A (FP) 32P3Y-H (TP) Outline 32P3Y-J (RT) MITSUBISHI ELECTRIC #### 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM #### **FUNCTION** The M5M5408BFP,TP,RT,KV,KR is organized as 524,288-words by 8-bit. These devices operate on a single +2.7~3.6V power supply, and are directly TTL compatible to both input and output. Its fully static circuit needs no clocks and no refresh, and makes it useful. A write operation is executed during the \overline{S} low and \overline{W} low overlap time. The address(A0~A18) must be set up before the write cycle A read operation is executed by setting \overline{W} at a high level and \overline{OE} at a low level while S are in an active state(\overline{S} =L). When setting \overline{S} at a high level, the chips are in a non-selectable mode in which both reading and writing are disabled. In this mode, the output stage is in a high-impedance state, allowing OR-tie with other chips. Setting the \overline{OE} at a high level,the output stage is in a high-impedance state, and the data bus contention problem in the write cycle is eliminated. The power supply current is reduced as low as $0.3\mu A(25^{\circ}C,$ typical), and the memory data can be held at +2V power supply, enabling battery back-up operation during power failure or power-down operation in the non-selected mode. #### **FUNCTION TABLE** | s | \overline{W} | ŌE | Mode | DQ | lcc | |---|----------------|----|---------------|-----------------|---------| | Н | Х | Х | Non selection | High-impedance | Standby | | L | L | Х | Write | Data input (D) | Active | | L | Ι | L | Read | Data output (Q) | Active | | L | Η | Н | Read | High-impedance | Active | | Pin | Function | |-------------------------|---------------------| | A0 ~ A18 | Address input | | DQ1 ~ DQ8 | Data input / output | | <u> </u> | Chip select input | | $\overline{\mathbb{W}}$ | Write control input | | ŌĒ | Output inable input | | Vcc | Power supply | | GND | Ground supply | #### **BLOCK DIAGRAM** ## 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM ## **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Conditions | Ratings | Units | |--------|-----------------------|----------------------|-------------------|-------| | Vcc | Supply voltage | With respect to GND | -0.5* ~ +4.6 | | | Vı | Input voltage | With respect to GND | -0.5* ~ Vcc + 0.5 | V | | Vo | Output voltage | With respect to GND | 0 ~ Vcc | | | Pd | Power dissipation | Ta=25°C | 700 | mW | | | Operating | Standard (-L, -H) | 0 ~ +70 | | | Ta | Operating temperature | W-version (-LW, -HW) | -20 ~ +85 | °C | | | tomporataro | I-version (-LI, -HI) | -40 ~ +85 | | | Tstg | Storage temperature | | -65 ~150 | °C | ^{* -3.0}V in case of AC (Pulse width 30ns) ### DC ELECTRICAL CHARACTERISTICS (Vcc=2.7 ~ 3.6V, unless otherwise noted) | Symbol | Danamatan | | 1141 | | | Limits | | 11. % | |------------------|---|-----------------------|--------------------|-------------|----------|--------|----------|-------| | Symbol | Parameter | Conditions | | | Min | Тур | Max | Units | | VIH | High-level input voltage | | | | 2.2 | | Vcc+0.3V | | | V_{IL} | Low-level input voltage | | | | | | 0.6 | | | V _{OH1} | High-level output voltage 1 | Iон= -0.5mA | | | 2.4 | | | V | | V_{OH2} | High-level output voltage 2 | Iон= -0.05mA | | | Vcc-0.5V | | | | | Vol | Low-level output voltage | loL=2mA | | | | | 0.4 | | | lı | Input leakage current | Vı=0 ~ Vcc | | | | | ±1 | μA | | lo | Output leakage current | S=VIH or OE=VIH, V | /ı/o=0 ~ Vcc | | | | ±1 | μΛ | | lcc1 | Active supply current | S 0.2V Output-op | pen | f= 10MHz | - | 30 | 40 | | | 1001 | (AC, CMOS-level) | Other inputs 0.2V of | or Vcc-0.2V | f= 1MHz | ı | 5 | 7 | mA | | | Active supply current | S=VIL Output-o | pen | f= 10MHz | ı | 30 | 40 | IIIA | | lcc2 | (AC,TTL-level) | Other inputs=VIH or V | / IL | f= 1MHz | - | 5 | 7 | | | | | | -LW, -LI | +85°C | ı | • | 80 | | | | | V 0.0V | -L, -LW, -LI | +70°C | ı | - | 40 | | | | | Vcc=3.6V, max. | -HW, -HI | +85°C | 1 | • | 40 | | | lcc3 | Stand by supply current | S Vcc-0.2V | -H, -HW, -HI | +70°C | - | - | 20 | ۸ | | 1000 | (CMOS-level input) | Other inputs=0~Vcc | -11, -11 vv , -111 | +40°C | - | 1 | 5 | μA | | | | | -H | 0 ~ +25°C | - | 0.3 | 2 | | | | | | -HW | -20 ~ +25°C | ı | 0.3 | 2 | | | | | | -HI | -40 ~ +25°C | - | 0.3 | 2 | | | Icc4 | Stand by supply current (TTL-level input) | S=VIH ,Other inputs | = 0 ~ Vcc | | - | - | 0.5 | mA | Note 1: Direction for current flowing into IC is indicated as positive (no mark) ## **CAPACITANCE** (Vcc=2.7 ~ 3.6V, unless otherwise noted) | Symbol Parameter | Parameter | O and divisor a | | Limits | 3 | 11-14- | | |------------------|--------------------|----------------------------|-----|--------|-----|--------|--| | Cymbol | | Conditions | Min | Тур | Max | Units | | | Сі | Input capacitance | Vi=GND, Vi=25mVrms, f=1MHz | | | 8 | | | | Со | Output capacitance | Vo=GND,Vo=25mVrms, f=1MHz | | | 10 | pF | | ^{* -3.0}V in case of AC (Pulse width 30ns) Note 2: Typical value is for Vcc=3.0V ## 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM ## AC ELECTRICAL CHARACTERISTICS (Vcc=2.7 ~ 3.6V, unless otherwise noted) ## (1) TEST CONDITIONS | Supply voltage | 2.7V~3.6V | |-------------------------------|---| | Input pulse | VIH=2.4V,VIL=0.4V | | Input rise time and fall time | 5ns | | Reference level | Voh=Vol=1.5V Transition is measured ±500mV from steady state voltage.(for ten,tdis) | | Output loads | Fig.1,CL=30pF
CL=5pF (for ten,tdis) | ## (2) READ CYCLE | Symbol | Parameter | | M5M5V408B
FP,TP,RT,KV,KR-70 | | M5M5V408B
FP,TP,RT,KV,KR-85 | | | |-----------------------|---|-----|--------------------------------|-----|--------------------------------|----|--| | | | Min | Max | Min | Max | | | | t cr | Read cycle time | 70 | | 85 | | ns | | | ta(A) | Address access time | | 70 | | 85 | ns | | | ta(S) | Chip select access time | | 70 | | 85 | ns | | | ta(OE) | Output enable access time | | 35 | | 45 | ns | | | tdis(S) | Output disable time after \$\overline{S}\$ high | | 25 | | 30 | ns | | | t _{dis} (OE) | Output disable time after OE high | | 25 | | 30 | ns | | | ten(S) | Output enable time after \overline{S} low | 10 | | 10 | | ns | | | ten(OE) | Output enable time after OE low | 5 | | 5 | | ns | | | t∨(A) | Data valid time after address | 10 | | 10 | | ns | | ## (3) WRITE CYCLE | Symbol | Parameter | M5M5
FP,TP,RT | V408B
,KV,KR-70 | M5M5
FP,TP,RT | Units | | |----------------------|--|------------------|--------------------|------------------|-------|----| | | | Min | Max | Min | Max | | | tcw | Write cycle time | 70 | | 85 | | ns | | t _w (W) | Write pulse width | 55 | | 60 | | ns | | tsu(A) | Address set up time | 0 | | 0 | | ns | | tsu(A-WH) | Address set up time with respect to $\overline{\mathbb{W}}$ high | 65 | | 70 | | ns | | tsu(S) | Chip select set up time | 65 | | 70 | | ns | | tsu(D) | Data set up time | 35 | | 35 | | ns | | th(D) | Data hold time | 0 | | 0 | | ns | | trec(W) | Write recovery time | 0 | | 0 | | ns | | t _{dis} (W) | Output disable time after \overline{W} low | | 25 | | 30 | ns | | tdis(OE) | Output disable time after OE high | | 25 | | 30 | ns | | ten(W) | Output enable time after $\overline{\mathbb{W}}$ high | 5 | | 5 | | ns | | ten(OE) | Output enable time after $\overline{\sf OE}$ low | 5 | | 5 | | ns | ## 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM ## (4)TIMING DIAGRAMS ## Write cycle (W control mode) ### 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM ## Write cycle (S control mode) Note 3: Hatching indicates the state is "don't care". Note 4: A Write occurs during the overlap of a low \overline{S} and a low \overline{W} . Note 5: If \overline{W} goes low simultaneously with or prior to \overline{S} , the output remains in the high impedance state. Note 6: Don't apply inverted phase signal externally when DQ pin is in output mode. ## 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM ## **POWER DOWN CHARACTERISTICS** ## (1) ELECTRICAL CHARACTERISTICS | 0 | Danasatan | December 7 to 15th | | | Linita | | | | |----------|----------------------------------|--------------------|--------------|-------------|--------|-----|-----|-------| | Symbol | Parameter | Test | conditions | | Min | Тур | Max | Units | | Vcc (PD) | Power down supply voltage | | | | 2.0 | | | V | | VI (S) | Chip select input \overline{S} | | | | 2.0 | | | V | | | | | -LW, -LI | +85°C | - | - | 60 | μΑ | | | | Vcc=3.0V. | -L, -LW, -LI | +70°C | - | - | 30 | μA | | | | | -HW, -HI | +85°C | - | - | 30 | μΑ | | Icc (PD) | Power down | S Vcc-0.2V, | -H, -HW, -HI | +70°C | - | - | 15 | μΑ | | | supply current | Other inputs = | -n, -n w, -m | +40°C | 1 | 1 | 3 | μΑ | | | | 0 ~ Vcc | -H | 0 ~ +25°C | 1 | 0.3 | 1 | μΑ | | | | | -HW | -20 ~ +25°C | - | 0.3 | 1 | μA | | | | | -HI | -40 ~ +25°C | - | 0.3 | 1 | μA | Typical value is based on sampling. ## (2) TIMING REQUIREMINTS | Cymah al | Dorometer | Took conditions | | l lada | | |-----------|--------------------------|-----------------|-------------|--------|----| | Symbol | Parameter | Test conditions | Min Typ Max | Units | | | tsu (PD) | Power down set up time | | 0 | | ns | | trec (PD) | Power down recovery time | | 5 | | ms | ## (3) TIMING DIAGRAM ## S control mode # ${\tt M5M5V408BFP,TP,RT,KV}$ ## 4194304-BIT (524288-WORD BY 8-BIT) CMOS STATIC RAM | Revision History | | | | |------------------|------------------------------------|-------------|----------------| | Revision No. | <u>History</u> | <u>Date</u> | Remarks | | K0.1e | The first edition | '98.3.05 | Preliminary | | K0.2e | Added M5M5V408BFP/TP/RT | '98.7.30 | Preliminary | | K1.0e | The first product version | '98.9.7 | | | K2.0e | 1) Speed items revised: | | | | | 70ns added and 100ns deleted | | | | | 2) Icc3 and Icc(PD) limits revised | '99.3.10 | | ### Keep safety first in your circuit designs! Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. ### **Notes regarding these materials** These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party. Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com). When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein. | nil SOP | | | | | | | | | notorc | Max | 3.05 | 0.2 | ı | 0.5 | 0.2 | 20.95 | 11.5 | I | 14.4 | 1.0 | ı | 0.15 | °
8 | I | ı | ı | |----------------------------------|------------------|----------|-----|-------------------------------|---------------|---|---|-----------------------|--------------------------|--------|------|----------|------------|------|------|----------|----------|------|------|-----|------|----------|----------|----------------|----------|------| | Plastic 32pin 525mil SOP | | b2 × | | | Z

 | | # | Recommended Mount Pad | Dimension in Millimeters | No. | Į I | 0.1 | 2.75 | 0.4 | 0.15 | 20.75 | 11.4 | 1.27 | 14.1 | 8.0 | 1.35 | ı | ı | 0.76 | 13.34 | ı | | lastic 32 | | ٥ | | -
 | | | - | nmended № | | | I | 0 | I | 0.35 | 0.13 | 20.55 | 11.3 | I | 13.8 | 9.0 | I | I | 0° | I | I | 1.27 | | | | X | - = |]
}
← | | ı | | Recon | | Symbol | ⋖ | Ą | A 2 | ۵ | ပ | Δ | ш | Ø | 뿐 | _ | 7 | > | θ | p ₂ | e
T | 12 | | Lead Material | Alloy 42 | | | ¥ | Įθ | | | | | | | <u>u</u> | K V | | | A2 A1 | <u>/</u> | | | 0 | 17 | 7 | S | L | Detail F | | | Weight(g) | 1.29 | | | | | | | | | | | | | | | 7 | \ | | | | | | N | | | | | JEDEC Code | ı | | | | | | | | | | | | | | | D | | | | | | (G) | | | | | | 32P2M-A EIAJ Package Code | SOP32-P-525-1.27 | | | | < | | 3 | (| | | | -) | | | | <u>\</u> | / | | | | | <u> </u> | | | | | | Plastic 32pin 400mil TSOP (II) | | Recommended Mount Pad | nsion in Millim | A 12 | 0.05 0.125 | 1.0 | b 0.35 0.4 0.5
c 0.105 0.125 0.175 | 20.85 20.95 2 | 10.06 | 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 0.5 | - 0.8 | y – 0.1 | °0 | 6.0 | b2 - 0.76 - | |--|--|-----------------------|-----------------|------|------------|-----|---------------------------------------|---------------|-------|---|-----|---------|---------|----------|-----|-------------------| | 32P3Y-HEIAJ Package CodeJEDEC CodeWeight(g)Lead MaterialTSOPII32-P-400-1.27-0.53Alloy 42 | | ∃ ∃ | | | | | | | | | | A2 A1 | * | Detail F | | | | | Weight(g) Lead Material | Plastic 32pin 8×13.4mm TSOP(I) | pin 8X1 | 3.4mm T | SOP(I) | | |---------|---------------------------|--------------------------------|----------|--------------------------|--------|--| | | | _* | MD | 7 | | | | | | a | | | | | | | | | | | 1 | | | | |
 | | | | | | | | | | | | | | | (32) | Recomm | nended M | Recommended Mount Pad | | | | | | | Dimens | Dimension in Millimeters | neters | | | | | Oymbol | Min | Nom | Max | | | | | ∢. | 1 | 1 | 1.2 | | | T ZA IA | | A1 | 0.05 | 0.125 | 0.2 | | | SA IA | q | 42 4 | 1 0 | 0.0 | 1 0 | | | A IA |) | 2 0 | 0.13 | 0.15 | 0.2 | | | A IA | | Ω | 11.7 | 11.8 | 11.9 | | | A IA | _ | Ш | 7.9 | 8.0 | 8.1 | | | A IA | | Φ | ı | 0.5 | ı | | | SA 1A | | 웃 | 13.2 | 13.4 | 13.6 | | | rA | | - . | 9.0 | 0.5 | 0.6 | | |]
] | > | | ı | 0.8 | ı | | | | | > | ı | ı | 0.1 | | | | | θ | °O | ı | 10° | | | | → | b2 | ı | 0.225 | ı | | | | Detail F | 12 | 0.0 | ı | ı | | | | | MD | I | 12.0 | I | | | SOP(I) | | | | | meters | Max | 0.2 | ı | 0.3 | 0.2 | 9. 1.8 | ı | 13.6 | 9.0 | ı | 0.1 | 10° | ı | ı | I | |---|---------------------------|---------------------------------------|---------------|--|--------------------------|----------|-------|-----|------|------|--------|----------|------|-----------|----------|--------------|------------|----------------|----------|------| | Plastic 32pin 8 $ imes$ 13.4mm TSOP (I) | | | | nt Pad | Dimension in Millimeters | Nom | 0.125 | 1.0 | 0.2 | 0.15 | 8.0 | 0.5 | 13.4 | 0.5 | 0.8 | ı | ı | 0.225 | ı | 12.0 | | 2pin 8X1 | S | <u></u> | | ←→ 2
Recommended Mount Pad | | | 0.05 | ı | 0.15 | 0.13 | 7.17 | I | 13.2 | 0.4 | I | 1 | ° | I | 6.0 | I | | lastic 32 | | ф———————————————————————————————————— | | | | Symbol | Y Y | A2 | q | o (| Д Ш | ø | 웃 | _ | | > | θ | p ₂ | 12 | MD | | | | Ð | <u>sd</u> > < | | | | | | | | | | | | | | | | | | | - | _ | | | | 7 y | | | | | | 7 | | | | c | | _ ′ | <u></u> | 1 | | | | Lead Material
Alloy 42 | | - | Ð | | | | q | | | | <u>\</u> | | <u>sA</u> | | $\psi\theta$ | ·A | | Detail F | | | | Weight(g) | | <u></u> | —————————————————————————————————————— | <u> </u> | <u> </u> | 1 A A | (A) | | | | | | | |) | | | | | | | JEDEC Code | | 면
0 | | | | | | | | L | | | | | | | | | | | 32P3K-C | EIAJ Package Code
- | | <u>V</u> | | | | | | | | | | | | | | | | | |