
Rev. 0.1 9/12 Copyright © 2012 by Silicon Laboratories AN666

AN666

USAGE GUIDE FOR SIM3U1XX, SIM3C1XX, AND
SIM3L1XX DMA AND DTM MODULES

1. Introduction

The Direct Memory Access (DMA) (SiM3U1xx, SiM3C1xx, and SiM3L1xx) and Data Transfer Manager (DTM)
(SiM3L1xx) modules are complex data management modules intended to autonomously transfer data between
peripherals and memory. These modules can save system power consumption by allowing the core to enter a low
power state or process data in parallel to improve performance. This document discusses usage models for these
modules.

Figure 1. Transferring Data using the DMA and DTM modules

2. Key Points

This key topics of this document are:

Using the DMA in a basic memory-to-memory data transfer

Using the DMA from a peripheral-to-memory data transfer

Using the DMA from memory to a peripheral data transfer

Complex multi-channel DMA transfers using the Data Transfer Manager (SiM3L1xx devices only)

3. Relevant Documentation

Precision32 Application Notes are listed on the following website: www.silabs.com/32bit-appnotes.

AN725: Advanced Low Power Techniques for SiM3L1xx Devices

AN667: Getting Started with the Silicon Labs Precision32 IDE

AN670: Integrating Silicon Labs SiM3xxxx Devices into the Keil µVision IDE

SiM3xxxx
Address Space (RAM)

DMA Channel 1

DMA Channel 0USART0 RX

USART0 TX

www.silabs.com/32bit-appnotes

AN666

2 Rev. 0.1

4. DMA Overview

The DMA consists of two modules: DMA controller (DMACTRL) and DMA peripheral crossbar (DMAXBAR). The
controller provides a single access point for all 16 (SiM3U1xx and SiM3C1xx) or 10 (SiM3L1xx) DMA channels and
the global DMA controls. The controller is also responsible for handling arbitration between channels. The DMA
peripheral crossbar assigns channels to a peripheral. When assigned and properly configured, the peripheral’s
data request signal will trigger a DMA channel to transfer data. Figure 2 shows a block diagram of the DMA
controller and DMA peripheral crossbar.

Figure 2. DMACTRL and DMACH Block Diagram

The channels have controls and flags in the DMACTRL registers. In addition, each channel has one or more
transfer descriptors stored in memory that describe the data transfer in detail. Each channel can have primary,
alternate, or scatter-gather descriptors. The BASEPTR and ABASEPTR registers in the controller point to the
starting address of these descriptors in memory. Firmware sets the BASEPTR field, and the controller hardware
automatically sets the ABASEPTR field based on the number of channels implemented in the module.

Each channel has separate enables, alternate enables, masks, software requests, programmable priority, and
status flags. The channels operate independently, but have a fixed arbitration order.

The STATE field reports the current status of the DMA controller, and the DMAENS bit indicates whether the global
DMA enable is set.

DMAXBARn
Module

DMACTRLn
Module

Channel Control

Channel Status

Global Controller
State and Enable

Channel Software
Transfer Request

Arbitration

SiM3xxxx
RAM

DMA Channel n
(DMAn_CHx)

Source Pointer

Destination Pointer

Configuration

DMA Channel 0
(DMAn_CH0)

Source Pointer

Destination Pointer

Configuration

DMA Channel 1
(DMAn_CH1)

Source Pointer

Destination Pointer

Configuration

Peripheral 0.0

Peripheral 0.1

Peripheral 0.2

Peripheral 0.3

Peripheral 0.x

Peripheral 1.0

Peripheral 1.1

Peripheral 1.2

Peripheral 1.3

Peripheral 1.y

Peripheral n.0

Peripheral n.1

Peripheral n.2

Peripheral n.3

Peripheral n.z

AN666

Rev. 0.1 3

4.1. DMA Channel Transfer Descriptors
Each channel has transfer descriptors stored in memory that describe the data transfer in detail. Each descriptor is
composed of four 32-bit words in memory organized as follows:

1. Source End Pointer (word 1): The address of the last source data in the transfer.

2. Destination End Pointer (word 2): The last destination address of the transfer.

3. Channel Configuration (word 3): Configuration details for the transfer.

4. Alignment padding (word 4): Not used by the DMA controller. Firmware may use this word for any
purpose.

Each channel can have primary, alternate, and scatter-gather descriptors. The primary and alternate descriptors
are organized in contiguous blocks in memory for each of the channels. The spacing for these descriptors is fixed,
so any unused channels must still be accounted for when placing descriptors in memory. The primary descriptors
must be placed at the start of an address block sized for both the primary and alternate descriptors. For SiM3U1xx,
SiM3C1xx, and SiM3L1xx devices that implement 16 or 10 DMA channels, the BASEPTR points to the start of the
primary descriptors and is 23 bits wide. The valid addresses for the BASEPTR field are multiples of 256
(0x0000_0100), and the required memory for all primary and alternate descriptors for 16 channels is 512 bytes.
The scatter-gather descriptors are more flexible and can appear anywhere in memory.

Channel 0’s primary descriptor begins at address offset 0x0000, Channel 1’s primary descriptor starts at offset
0x0010, and so on. The alternate descriptors begin at the next memory block (256 bytes), regardless of whether or
not the primary descriptors for the channels are in use.

Firmware originally sets the channel configuration descriptor; the DMA controller will modify this word as the
transfer progresses, so firmware should not write to this descriptor until any active transfers for the channel are
complete.

Figure 3 shows the fixed memory configuration for the descriptors.

AN666

4 Rev. 0.1

Figure 3. Channel Transfer Descriptor Memory Configuration

ABASEPTR

SiM3xxxx
Address Space (RAM)

SRCEND

DSTEND

CONFIG
Channel x

SRCEND

DSTEND

CONFIG

BASEPTR

Channel 0

SRCEND

DSTEND

CONFIG
Channel 1

Primary
Structures

SRCEND

DSTEND

CONFIG
Channel 0

SRCEND

DSTEND

CONFIG
Channel 1

SRCEND

DSTEND

CONFIG
Channel x

Alternate
Structures

SRCEND

DSTEND

CONFIG Channel 0
SG 1

SRCEND

DSTEND

CONFIG Channel 0
SG 2

(Optional)
Scatter-Gather

Structures

AN666

Rev. 0.1 5

4.1.1. Channel Transfer Descriptors

Table 1, Table 2, and Table 3 describe the source end pointer, destination pointer, and configuration descriptors for
the primary, alternate, and scatter-gather DMA channel descriptors.

Address in Channel Transfer Descriptor: 0x0000

Address in Channel Transfer Descriptor: 0x0004

Table 1. DMA0_CHx_SRCEND: Source End Pointer

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Name SRCEND[31:16]

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name SRCEND[15:0]

Bit Name Function

31:0 SRCEND Source End Pointer.

This field is the address of the last source data in the DMA transfer.

Table 2. DMA0_CHx_DSTEND: Destination End Pointer

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Name DSTEND[31:16]

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name DSTEND[15:0]

Bit Name Function

31:0 DSTEND Destination End Pointer.

This field is the last destination address of the DMA transfer.

AN666

6 Rev. 0.1

Address in Channel Transfer Descriptor: 0x0008

Table 3. DMA0_CHx_CONFIG: Channel Configuration

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Name

D
S

TA
IM

D

D
S

T
S

IZ
E

S
R

C
A

IM
D

S
R

C
S

IZ
E

Reserved

R
P

O
W

E
R

[3
:2

]

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Name

R
P

O
W

E
R

[1
:0

]

NCOUNT

R
es

er
ve

d

TMD

Bit Name Function

31:30 DSTAIMD Destination Address Increment Mode.

This field must be set to a value that's equal to or greater than the DSTSIZE setting.
00: The destination address increments by one byte after each data transfer.
01: The destination address increments by one half-word after each data transfer.
10: The destination address increments by one word after each data transfer.
11: The destination address does not increment.

29:28 DSTSIZE Destination Data Size Select.

The destination size (DSTSIZE) must equal the source size (SRCSIZE).
00: Each DMA destination data transfer writes a byte.
01: Each DMA destination data transfer writes a half-word.
10: Each DMA destination data transfer writes a word.
11: Reserved.

27:26 SRCAIMD Source Address Increment Mode.

This field must be set to a value that's equal to or greater than the SRCSIZE setting.
00: The source address increments by one byte after each data transfer.
01: The source address increments by one half-word after each data transfer.
10: The source address increments by one word after each data transfer.
11: The source address does not increment.

25:24 SRCSIZE Source Data Size Select.

The destination size (DSTSIZE) must equal the source size (SRCSIZE).
00: Each DMA source data transfer reads a byte.
01: Each DMA source data transfer reads a half-word.
10: Each DMA source data transfer reads a word.
11: Reserved.

23:18 Reserved Must write 0 to this field.

AN666

Rev. 0.1 7

17:14 RPOWER Transfer Size Select.

This field determines the number of data transfers between each DMA channel re-arbi-
tration. The number of data transfers is given by:

This field is ignored for peripherals that support single data requests only. A value of 0
for RPOWER should be used for channels interfacing with these types of peripherals.

13:4 NCOUNT Transfer Total.

This field is the total number of transfers for the DMA channel. The total number is
NCOUNT + 1, so software requiring a total of 4 transfers would set the NCOUNT field
to 3.
The DMA controller decrements this field as transfers are made.

3 Reserved Must write 0 to this bit.

2:0 TMD Transfer Mode.

000: Stop the DMA channel.
001: Use the Basic transfer type (single descriptor only).
010: Use the Auto-Request transfer type (single descriptor only).
011: Use the Ping-Pong transfer type (primary and alternate descriptors).
100: Use the Memory Scatter-Gather Primary transfer type (primary, alternate, and
scattered descriptors).
101: Use the Memory Scatter-Gather Alternate transfer type (primary, alternate, and
scattered descriptors).
110: Use the Peripheral Scatter-Gather Primary transfer type (primary, alternate, and
scattered descriptors).
111: Use the Peripheral Scatter-Gather Alternate transfer type (primary, alternate, and
scattered descriptors).

Bit Name Function

Number of Transfers 2
RPOWER

=

AN666

8 Rev. 0.1

4.2. DMA Peripheral Crossbar
Peripherals are assigned to various channels, and the DMA Crossbar can be used to assign a channel to a
particular peripheral. These assignments are shown in Table 4.

Table 4. DMA Crossbar Channel Peripheral Assignments for SiM3U1xx Devices

Peripheral

D
M

A
 C

h
a

n
n

e
l

0

D
M

A
 C

h
a

n
n

e
l

1

D
M

A
 C

h
a

n
n

e
l

2

D
M

A
 C

h
a

n
n

e
l

3

D
M

A
 C

h
a

n
n

e
l

4

D
M

A
 C

h
a

n
n

e
l

5

D
M

A
 C

h
a

n
n

e
l

6

D
M

A
 C

h
a

n
n

e
l

7

D
M

A
 C

h
a

n
n

e
l

8

D
M

A
 C

h
a

n
n

e
l

9

D
M

A
 C

h
a

n
n

e
l

10

D
M

A
 C

h
a

n
n

e
l

11

D
M

A
 C

h
a

n
n

e
l

12

D
M

A
 C

h
a

n
n

e
l

13

D
M

A
 C

h
a

n
n

e
l

14

D
M

A
 C

h
a

n
n

e
l

15

AES0 RX

AES0 TX

AES0 XOR

DMAXT0

DMAXT1

EPCA0 Capture

EPCA0 Control

I2C0 RX

I2C0 TX

I2S RX

I2S TX

IDAC0

IDAC1

SARADC0

SARADC1

SPI0 RX

SPI0 TX

SPI1 RX

SPI1 TX

TIMER0L Overflow

TIMER0H Overflow

TIMER1L Overflow

TIMER1H Overflow

AN666

Rev. 0.1 9

USART0 RX

USART0 TX

USART1 RX

USART1 TX

USB0 EP1 IN

USB0 EP2 IN

USB0 EP3 IN

USB0 EP4 IN

USB0 EP1 OUT

USB0 EP2 OUT

USB0 EP3 OUT

USB0 EP4 OUT

Software Trigger

Table 5. DMA Crossbar Channel Peripheral Assignments for SiM3C1xx Devices

Peripheral

D
M

A
 C

h
a

n
n

e
l 0

D
M

A
 C

h
a

n
n

e
l 1

D
M

A
 C

h
a

n
n

e
l 2

D
M

A
 C

h
a

n
n

e
l 3

D
M

A
 C

h
a

n
n

e
l 4

D
M

A
 C

h
a

n
n

e
l 5

D
M

A
 C

h
a

n
n

e
l 6

D
M

A
 C

h
a

n
n

e
l 7

D
M

A
 C

h
a

n
n

e
l 8

D
M

A
 C

h
a

n
n

e
l 9

D
M

A
 C

h
a

n
n

e
l 1

0

D
M

A
 C

h
a

n
n

e
l 1

1

D
M

A
 C

h
a

n
n

e
l 1

2

D
M

A
 C

h
a

n
n

e
l 1

3

D
M

A
 C

h
a

n
n

e
l 1

4

D
M

A
 C

h
a

n
n

e
l 1

5

AES0 RX

AES0 TX

AES0 XOR

DMAXT0

DMAXT1

EPCA0 Capture

EPCA0 Control

Table 4. DMA Crossbar Channel Peripheral Assignments for SiM3U1xx Devices

Peripheral

D
M

A
 C

h
an

n
el

 0

D
M

A
 C

h
an

n
el

 1

D
M

A
 C

h
an

n
el

 2

D
M

A
 C

h
an

n
el

 3

D
M

A
 C

h
an

n
el

 4

D
M

A
 C

h
an

n
el

 5

D
M

A
 C

h
an

n
el

 6

D
M

A
 C

h
an

n
el

 7

D
M

A
 C

h
an

n
el

 8

D
M

A
 C

h
an

n
el

 9

D
M

A
 C

h
an

n
el

 1
0

D
M

A
 C

h
an

n
el

 1
1

D
M

A
 C

h
an

n
el

 1
2

D
M

A
 C

h
an

n
el

 1
3

D
M

A
 C

h
an

n
el

 1
4

D
M

A
 C

h
an

n
el

 1
5

AN666

10 Rev. 0.1

I2C0 RX

I2C0 TX

I2S RX

I2S TX

IDAC0

IDAC1

SARADC0

SARADC1

SPI0 RX

SPI0 TX

SPI1 RX

SPI1 TX

TIMER0L Overflow

TIMER0H Overflow

TIMER1L Overflow

TIMER1H Overflow

USART0 RX

USART0 TX

USART1 RX

USART1 TX

Software Trigger

Table 5. DMA Crossbar Channel Peripheral Assignments for SiM3C1xx Devices (Continued)

Peripheral

D
M

A
 C

h
an

n
el

 0

D
M

A
 C

h
an

n
el

 1

D
M

A
 C

h
an

n
el

 2

D
M

A
 C

h
an

n
el

 3

D
M

A
 C

h
an

n
el

 4

D
M

A
 C

h
an

n
el

 5

D
M

A
 C

h
an

n
el

 6

D
M

A
 C

h
an

n
el

 7

D
M

A
 C

h
an

n
el

 8

D
M

A
 C

h
an

n
el

 9

D
M

A
 C

h
an

n
el

 1
0

D
M

A
 C

h
an

n
el

 1
1

D
M

A
 C

h
an

n
el

 1
2

D
M

A
 C

h
an

n
el

 1
3

D
M

A
 C

h
an

n
el

 1
4

D
M

A
 C

h
an

n
el

 1
5

AN666

Rev. 0.1 11

Table 6. DMA Crossbar Channel Peripheral Assignments for SiM3L1xx Devices

Peripheral

D
M

A
 C

h
a

n
n

e
l 0

D
M

A
 C

h
a

n
n

e
l 1

D
M

A
 C

h
a

n
n

e
l 2

D
M

A
 C

h
a

n
n

e
l 3

D
M

A
 C

h
a

n
n

e
l 4

D
M

A
 C

h
a

n
n

e
l 5

D
M

A
 C

h
a

n
n

e
l 6

D
M

A
 C

h
a

n
n

e
l 7

D
M

A
 C

h
a

n
n

e
l 8

D
M

A
 C

h
a

n
n

e
l 9

DTM0 A

DTM0 B

DTM0 C

DTM0 D

DTM1 A

DTM1 B

DTM1 C

DTM1 D

DTM2 A

DTM2 B

DTM2 C

DTM2 D

SPI0 TX

SPI0 RX

ENCDEC0 TX

ENCDEC0 RX

AES0 TX

AES0 RX

AES0 XOR

SPI1 TX

SPI1RX

USART0 TX

USART0 RX

I2C0 RX

I2C0 TX

SARADC0

AN666

12 Rev. 0.1

IDAC0

EPCA0 Capture

EPCA0 Control

TIMER0L Overflow

TIMER0H Overflow

TIMER1L Overflow

TIMER1H Overflow

DMAXT0

DMAXT1

Software Trigger

Table 6. DMA Crossbar Channel Peripheral Assignments for SiM3L1xx Devices (Continued)

Peripheral

D
M

A
 C

h
an

n
el

 0

D
M

A
 C

h
an

n
el

 1

D
M

A
 C

h
an

n
el

 2

D
M

A
 C

h
an

n
el

 3

D
M

A
 C

h
an

n
el

 4

D
M

A
 C

h
an

n
el

 5

D
M

A
 C

h
an

n
el

 6

D
M

A
 C

h
an

n
el

 7

D
M

A
 C

h
an

n
el

 8

D
M

A
 C

h
an

n
el

 9

AN666

Rev. 0.1 13

4.3. Transfer Types
The DMA channels support five transfer types: basic, auto-request, ping-pong, memory scatter-gather, and
peripheral scatter-gather. Table 7 shows the memory requirements for each transfer type.

4.3.1. Basic Transfers

The basic transfer type uses only one descriptor (primary or alternate). In this mode, the channel will make
NCOUNT + 1 data moves in 2RPOWER bursts. Each data request moves one 2RPOWER set of data. The number of
requests required for a transfer is:

Equation 1. Number of Requests for Basic Transfers

Any data remaining can be transferred by firmware or use an extra DMA data request.

After the final data transfer:

1. The DMA channel will write the primary descriptor TMD field with 0.

2. The primary descriptor NCOUNT field will contain 0.

3. The controller automatically disables the channel (the channel bit in CHENSET will read 0).

Figure 4 illustrates the DMA memory descriptors for a basic transfer.

This transfer type is recommended for peripheral-to-memory or memory-to-peripheral transfers.

Table 7. Transfer Memory Requirements

Transfer Type Transfer Descriptors Required Maximum Memory (RAM)
Required (bytes)

Address
Offsets

(Primary /
Alternate)

Primary Alternate Scatter-
Gather

10 Channels
Implemented

16 Channels
Implemented

10 or 16
Channels

Implemented

Basic 160 256 0 / —

Auto-Request 160 256 0 / —

Ping-Pong 320 512 0 / 256

Memory Scatter-Gather 320 + SG 512 + SG 0 / 256 + SG

Peripheral Scatter-Gather 320 + SG 512 + SG 0 / 256 + SG

Number of Requests
NCOUNT 1+

2
RPOWER

-------------------------------------=

AN666

14 Rev. 0.1

Figure 4. Basic and Auto-Request Transfer Memory Configuration

4.3.2. Auto-Request Transfers

Auto-request transfers use only one descriptor (primary or alternate). This transfer type only requires one data
request to transfer all of the data. The controller will arbitrate as normal (every 2RPOWER transfers), and a channel
interrupt will occur when the transfer completes. This transfer type is recommended for memory-to-memory
transfers.

After the final data transfer:

1. The DMA channel will write the primary descriptor TMD field with 0.

2. The primary descriptor NCOUNT field will contain 0.

3. The controller automatically disables the channel (the channel bit in CHENSET will read 0).

The auto-request memory configuration is identical to the basic transfer shown in Figure 4.

ABASEPTR
SiM3xxxx

Address Space (RAM)

SRCEND

DSTEND

CONFIG

BASEPTR

Channel 0

Primary
Structures

AN666

Rev. 0.1 15

4.3.3. Ping-Pong Transfers

Ping-pong transfers use both the primary and alternate channel descriptors. When the channel completes the
transfer described by the first descriptor, it clears the TMD field in the original descriptor to 0 and toggles to point to
the other descriptor. A channel interrupt will occur to allow firmware to update the completed transfer’s descriptor,
as the ping-pong operation will stop without intervention.

As with basic transfers, each 2RPOWER data moves require a new data request. The number of requests is given by
Equation 1.

Figure 5 shows an example where a channel’s primary descriptor has an RPOWER of 1 with an NCOUNT of 3 and
the alternate descriptor has an RPOWER of 0 with an NCOUNT of 4. These descriptors are both configured to
move words (DSTSIZE and SRCSIZE set to 2) in ping-pong mode (TMD = 3).

Figure 6 illustrates the ping-pong memory configuration.

Figure 5. Ping-Pong Transfer Example

DMA
Channel 0

Primary Structure
(RPOWER = 1,
NCOUNT = 3)

Alternate Structure
(RPOWER = 0,
NCOUNT = 4)

Idle

data request

Primary Structure
(RPOWER = 0,
NCOUNT = 3)

Firmware

data request

primary structure
TMD set to 0,

channel switches to
alternate

moves
2 words

DMA channel
interrupt

idle or performing other
tasks

loads
primary

structure

loads
alternate
structure

Idle

data request

Idle

data request

Idle

data request

alternate structure TMD set to 0,
channel switches to primary

moves
1 word

moves
1 word

moves
2 words

idle or performing other tasks
loads

primary
structure

DMA channel
interrupt

idle or
performing
other tasks

passes
through ISR,
data moves

are done

moves
1 word

data request

moves
1 word

DMA channel
interrupt

Idle
moves
1 word

primary structure TMD set to 0,
all transfers stop until firmware

configures a structure

passes
through ISR,
data moves

are done

data request

AN666

16 Rev. 0.1

Figure 6. Ping-Pong Transfer Memory Configuration

ABASEPTR

SiM3xxxx
Address Space (RAM)

SRCEND

DSTEND

CONFIG

BASEPTR

Channel 0

Primary
Structures

SRCEND

DSTEND

CONFIG
Channel 0

Alternate
Structures

AN666

Rev. 0.1 17

4.3.4. Memory Scatter-Gather Transfers

The memory scatter-gather transfer uses primary, alternate, and scatter-gather descriptors. This transfer type
allows a DMA channel to be set for multiple transfers at once without core intervention at the price of extra memory
for the scatter-gather descriptors.

The primary descriptor in this mode contains the number and location of the scatter-gather descriptors. The
primary descriptor should be programmed as follows:

1. Memory scatter-gather primary mode (TMD = 4).

2. RPOWER = 2.

3. NCOUNT set to the value specified by Equation 2.

4. SRCEND is set to the location of the last word of all the scatter-gather descriptors.

5. DSTEND is set to the location of the last word in the single alternate descriptor.

Equation 2. NCOUNT Value for Scatter-Gather Transfers

The scatter-gather descriptors must be stacked contiguously in memory. The channel will copy the scatter-gather
descriptors into the alternate descriptor location and execute them one by one. The scatter-gather descriptors
should be programmed to memory scatter-gather alternate mode (TMD = 5), except for the last descriptor, which
should use the auto-request transfer type (TMD = 2).

Once started, the DMA channel execution process is as follows:

1. Copy scatter-gather 1 (SG1) to the alternate descriptor.

2. Jump to the alternate descriptor and execute.

3. Jump back to the primary descriptor.

4. Copy scatter-gather 2 (SG2) to the alternate descriptor.

5. Jump to the alternate descriptor and execute.

6. Jump back to the primary descriptor.

The channel will continue in this pattern until the channel encounters a scatter-gather descriptor set to a basic or
auto-request transfer.

Only one data request is required to execute all of the scattered transactions. The channel interrupt will occur once
the last scatter-gather descriptor (programmed to a basic transfer) executes, if enabled. Arbitration occurs every
2RPOWER of the scatter-gather descriptors.

Figure 7 shows the memory scatter-gather memory configuration.

NCOUNT Number of SG Structures 4 1–=

AN666

18 Rev. 0.1

Figure 7. Memory and Peripheral Scatter-Gather Transfer Memory Configuration

ABASEPTR

SiM3xxxx
Address Space (RAM)

BASEPTR

Primary
Structures

Alternate
Structures

SRCEND

DSTEND

CONFIG Channel 0
SG 1

SRCEND

DSTEND

CONFIG Channel 0
SG 2

(Optional)
Scatter-Gather

Structures

SRCEND

DSTEND

CONFIG
Channel 0

SRCEND

DSTEND

CONFIG
Channel 0

AN666

Rev. 0.1 19

4.3.5. Peripheral Scatter-Gather Transfers

The peripheral scatter-gather transfer is very similar to the memory scatter-gather transfer and uses primary,
alternate, and scatter-gather descriptors. This transfer type allows a DMA channel to be set for multiple transfers at
once without core intervention at the price of extra memory for the scatter-gather descriptors. A data request is
required for each 2RPOWER data move of the scatter-gather descriptor tasks. The RPOWER value can be different
for each scatter-gather task. Equation 1 describes the total number of data requests required to complete a
transfer.

The primary descriptor in this mode contains the number and location of the scatter-gather descriptors. The
primary descriptor should be programmed as follows:

1. Peripheral scatter-gather primary mode (TMD = 6).

2. RPOWER = 2.

3. NCOUNT set to the value specified by Equation 2.

4. SRCEND is set to the location of the last word of all the scatter-gather descriptors.

5. DSTEND is set to the location of the last word in the single alternate descriptor.

The scatter-gather descriptors must be stacked contiguously in memory. The channel will copy the scatter-gather
descriptors into the alternate descriptor location and execute them one by one. The scatter-gather descriptors
should be programmed to peripheral scatter-gather alternate mode (TMD = 7), except for the last descriptor, which
should use the basic transfer type (TMD = 1).

Once started, the DMA channel execution process is as follows:

1. Copy scatter-gather 1 (SG1) to the alternate descriptor.

2. Jump to the alternate descriptor and execute.

3. Jump back to the primary descriptor.

4. Copy scatter-gather 2 (SG2) to the alternate descriptor.

5. Jump to the alternate descriptor and execute.

6. Jump back to the primary descriptor.

The channel will continue in this pattern until the channel encounters a scatter-gather descriptor set to a basic or
auto-request transfer.

The channel interrupt will occur once the last scatter-gather descriptor (programmed to a basic transfer) executes,
if enabled.

Figure 7 shows the peripheral scatter-gather memory configuration.

AN666

20 Rev. 0.1

4.4. Data Requests
Each DMA channel has two data requests: single and burst. Peripherals can support single requests, burst
requests, or both. If configured to use a DMA channel, peripherals request data as needed using the appropriate
request type. Table 8 and Table 9 lists the supported requests for the supported triggers and peripherals.

The RPOWER field is only valid for peripherals that support burst requests. For peripherals that only support single
requests, the RPOWER field is ignored and re-arbitration occurs after every single data move.

Table 8. Supported Trigger or Peripheral Data Requests for SiM3U1xx/SiM3C1xx Devices

Peripheral Module Supported
Request Types

Number of Data
Transfers Per
Data Request

RPOWER

Setting

Data Size

AESn burst only 4 2 word

EPCAn burst only 1, 2, 4, or 8 0, 1, 2, or 3 word

I2Cn single only 1 unused word

I2Sn burst only 1 or 4 0 or 2 word

IDACn burst only 1 0 word

SARADCn burst only 4 2 word

SPIn burst only 1, 2, 4, or 8 0, 1, 2, or 3 byte

TIMERn overflow burst only any any byte, half-word, or
word

USARTn single only 1 unused byte, half-word, or
word

USBn both 1, 2, 4, or 8 0, 1, 2, or 3 word

External Trigger burst only any any byte, half-word, or
word

Software Trigger burst only any any byte, half-word, or
word

AN666

Rev. 0.1 21

In addition to peripheral-initiated transfers, all of the supported DMA channels can select the rising or falling edges
of one of the DMA external transfer start signals to initiate data transfers. When the selected edge occurs on the
external signal, the DMA channels with the DMA0T0/1 signals selected in the DMAXBARx.CHANnSEL field will
start the corresponding channel’s data transfer as defined by the DMA channel data descriptor in memory. The
DMA module external trigger sources are routed to peripheral pins using the crossbar.

4.5. Masking Channels
DMA channels can be temporarily disabled by setting the channel bit in CHREQMSET. Setting this bit to 1 causes
the DMA channel to no longer respond to data requests from peripherals. The channel will always respond to
software-initiated transfer requests, even if CHREQMSET is set for the channel. Firmware can write a 1 to the
CHREQMCLR register to clear the mask for a channel.

It is recommended that firmware set the channel request mask (CHREQMSET) for channels using software-
initiated transfers to avoid any peripherals connected to the channel from requesting DMA transfers.

4.6. Errors
The ERROR bit in the BERRCLR register indicates when a DMA bus error occurs. If enabled, this bit will generate
an interrupt.

Table 9. Supported Trigger or Peripheral Data Requests for SiM3L1xx Devices

Peripheral Module Supported
Request Types

Number of Data
Transfers Per
Data Request

RPOWER

Setting

Data Size

AESn burst only 4 2 word

EPCAn burst only 1, 2, 4, or 8 0, 1, 2, or 3 word

I2Cn single only 1 unused word

ENCDECn single only 1 unused byte, half-word, or
word, depending on

the mode

DTMn burst only varies based on the
peripheral

varies based on the
peripheral

varies based on the
peripheral

IDACn single only 1 unused word

SARADCn burst only 4 2 word

SPIn burst only 1, 2, 4, or 8 0, 1, 2, or 3 byte

TIMERn overflow burst only any any byte, half-word, or
word

USARTn single only 1 unused word

External Trigger burst only any any byte, half-word, or
word

Software Trigger burst only any any byte, half-word, or
word

AN666

22 Rev. 0.1

4.7. Arbitration
The DMA controller is a master on the AHB bus. This allows the module to control data transfers without any
interaction with the core.

The channels are in a fixed priority order. Channel 0 has the highest priority, and the last implemented channel has
the lowest priority. This fixed order can be superceded by using the programmable high priority setting
(CHHPSET). At each re-arbitration period, the controller gives control of the bus to the highest priority channel with
a pending data request.

The RPOWER field in the channel transfer descriptors determines when the re-arbitration periods occur. The
channel in control of the bus will make 2RPOWER data moves before the controller re-arbitrates. If the channel still
has the highest priority, it can transfer again until the next re-arbitration period. The RPOWER field is only valid for
peripherals that support burst requests. For peripherals that only support single requests, re-arbitration will occur
after each single data move.

Figure 8 shows an example controller arbitration with two channels active. Channel 0 has an RPOWER of 1 (2 data
moves), and channel 1 has an RPOWER of 0 (1 data move). Both channels are set to move words (DSTSIZE and
SRCSIZE set to 2).

Figure 8. DMA Arbitration Example

4.8. Fast Mode
The SCONFIG module contains a bit (FDMAEN) that enables faster DMA transfers when set to 1. It is
recommended that all applications using the DMA set this bit to 1.

IdleIdle
Channel 0

(RPOWER = 1)

IdleIdle

data request

data request

Channel 1
(RPOWER = 0)

Re-arbitration period
Channel 0 has a pending

request and highest priority

data request

data request

Re-arbitration period
Channel 0 has a pending

request and highest priority

Re-arbitration period
no pending data requests

Idle
moves
1 word

moves
2 words

moves
2 words

data request

Idle
moves
1 word

moves
1 word

Re-arbitration period
Channel 1 has a pending

request and highest priority

AN666

Rev. 0.1 23

5. Using the DMA for a Memory-to-Memory Transfer

The memory-to-memory transfer is the most basic DMA operation since it doesn’t require the interaction with a
peripheral. A memory-to-memory transfer can use the Auto-Request DMA transfer type.

Figure 9. Memory-to-Memory DMA Transfer

To configure a DMA channel for a memory-to-memory data transfer:

1. Enable the AHB and APB clocks to the DMA controller.

2. Enable the DMA module (DMAEN = 1).

3. Set the address location of the channel transfer descriptors (BASEPTR) according to the restrictions in
section “4.1. DMA Channel Transfer Descriptors”.

4. Use the CHALTCLR register to set the channel to use the primary descriptor.

5. Create the primary descriptor in memory for the desired transfer:

a. Set the SRCEND field to the last address of the source data.

b. Set the DSTEND field to the last address of the destination memory.

c. Set the destination and source address increment modes (DSTAIMD and SRCAIMD). In most cases,
these values should be the same.

d. Set the destination and source data size (DSTSIZE and SRCSIZE) to the same value.

e. Set the RPOWER to the desired number of data transfers between rearbitration. In most cases, this
value can be 0.

f. Set the NCOUNT field to the total number of transfers minus 1.

g. Set the transfer mode to the auto-request type (TMD = 2).

6. Disable data requests for the channel using the CHREQMSET register.

7. Set the DMA to fast mode using the FDMAEN bit in the SCONFIG module.

8. Enable the DMA channel using the CHENSET register.

9. (Optional) Enable the DMA channel interrupt.

10. Submit a request to start the transfer.

SiM3xxxx
Address Space (RAM)

DMA Channel 0

AN666

24 Rev. 0.1

For memory-to-memory transfers that do not rely on a peripheral, the easiest way to initiate these transfers is to
use the software request in the CHSWRCN register. It is recommended that firmware set the channel request mask
(CHREQMSET) for channels using software-initiated transfers to avoid any peripherals connected to the channel
from requesting DMA transfers.

Alternate start-of-transfer triggers could be the external triggers (DMAXT0 or DMAXT1) or a timer overflow trigger.

The DMA_Memory_to_Memory.c code example included in the software package demonstrates this type of DMA
transfer.

AN666

Rev. 0.1 25

6. Using the DMA for a Peripheral-to-Memory or Memory-to-Peripheral
Transfers

A peripheral-to-memory or memory-to-peripheral transfer can use the Basic DMA transfer type.

Figure 10. Peripheral-to-Memory DMA Transfer

Figure 11. Memory-to-Peripheral DMA Transfer

SiM3xxxx
Address Space (RAM)

DMA Channel 0USART0 RX

SiM3xxxx
Address Space (RAM)

DMA Channel 1 USART0 TX

AN666

26 Rev. 0.1

To configure a DMA channel for a peripheral-to-memory (receive) or memory-to-peripheral (transmit) data transfer:

1. Enable the AHB and APB clocks to the DMA controller.

2. Enable the DMA module (DMAEN = 1).

3. Set the address location of the channel transfer descriptors (BASEPTR).

4. Route the DMA signals from the peripheral function to a DMA channel.

5. Use the CHALTCLR register to set the channel to use the primary descriptor.

6. Create the primary descriptor in memory for the desired transfer:

a. Set the SRCEND field to the last address of the source data.

b. Set the DSTEND field to the peripheral FIFO register.

c. Set the destination and source address increment modes (DSTAIMD and SRCAIMD). For peripheral-
to-memory transfers, the source should be in non-incrementing mode. For peripheral-to-memory
transfers, the destination should be in non-incrementing mode.

d. Set the destination and source data size (DSTSIZE and SRCSIZE) to the same value.

e. Set the RPOWER to the desired number of data transfers between rearbitration. See the appropriate
RPOWER value for the peripheral (Table 4, Table 5, and Table 6).

f. Set the NCOUNT field to the total number of transfers minus 1.

g. Set the transfer mode to the basic type (TMD = 1).

7. Enable data requests for the channel (CHREQMCLR).

8. Set the DMA to fast mode using the FDMAEN bit in the SCONFIG module.

9. Enable the DMA channel using the CHENSET register.

10. (Optional) Enable the DMA channel interrupt.

11. Enable the peripheral to start the transfer.

The CHALTSET register can set a DMA channel to use the alternate descriptor instead of the primary descriptor.
Firmware can use the CHALTCLR register to set the channel back to the primary descriptor. The controller
automatically updates the CHALTSET fields to indicate which descriptor is in use during transfers that use the
alternate descriptor (ping-pong and scatter-gather).

The DMA_Peripheral_to_Memory.c code example included in the software package demonstrates a peripheral-
to-memory DMA transfer by using the USART0 peripheral (receive only) to receive ASCII characters from the
CP210x USB-to-UART bridge on the MCU Card and store them in memory. The characters can be entered using a
Terminal program on the PC.

The DMA_Memory_to_Peripheral.c code example included in the software package demonstrates a memory-to-
peripheral DMA transfer by using the USART0 peripheral (transmit only) to transmit an ASCII table stored in
memory to the CP210x USB-to-UART bridge on the MCU Card. The table is displayed in a Terminal program on
the PC.

AN666

Rev. 0.1 27

7. Using the DMA for a Delayed Peripheral-to-Memory-to-Peripheral
Transfer

The ping-pong data transfer allows a single DMA channel to perform multiple actions. After the first transfer
described by the primary descriptor completes, the DMA channel will automatically transition to the transfer in the
alternate descriptor. To stop the DMA, load the last descriptor with a basic transfer type (TMD = 1). The DMA will
interrupt after each ping-pong transfer completes.

Figure 12. Peripheral-to-Memory-to-Peripheral DMA Transfer

To configure a DMA channel for ping-pong data transfer:

1. Enable the AHB and APB clocks to the DMA controller.

2. Enable the DMA module (DMAEN = 1).

3. Set the address location of the channel transfer descriptors (BASEPTR).

4. Route the DMA signals from the peripheral function to a DMA channel.

5. Use the CHALTCLR register to set the channel to use the primary descriptor.

6. Create the primary descriptor in memory for the desired transfer:

a. Set the SRCEND field to the last address of the source data.

b. Set the DSTEND field to the peripheral FIFO register.

c. Set the destination and source address increment modes (DSTAIMD and SRCAIMD). For peripheral-
to-memory transfers, the source should be in non-incrementing mode. For peripheral-to-memory
transfers, the destination should be in non-incrementing mode.

d. Set the destination and source data size (DSTSIZE and SRCSIZE) to the same value.

e. Set the RPOWER to the desired number of data transfers between rearbitration. See the appropriate
RPOWER value for the peripheral.

f. Set the NCOUNT field to the total number of transfers minus 1.

g. If this is the last action for the DMA channel, set the transfer mode to the basic type (TMD = 1).
Otherwise, set the transfer mode to the ping-pong type (TMD = 3).

SiM3xxxx
Address Space (RAM)

DMA Channel 1

DMA Channel 0USART0 RX

USART0 TX

AN666

28 Rev. 0.1

7. Create the alternate descriptor in memory for the desired transfer:

a. Set the SRCEND field to the last address of the source data.

b. Set the DSTEND field to the peripheral FIFO register.

c. Set the destination and source address increment modes (DSTAIMD and SRCAIMD). For peripheral-
to-memory transfers, the source should be in non-incrementing mode. For peripheral-to-memory
transfers, the destination should be in non-incrementing mode.

d. Set the destination and source data size (DSTSIZE and SRCSIZE) to the same value.

e. Set the RPOWER to the desired number of data transfers between rearbitration. See the appropriate
RPOWER value for the peripheral.

f. Set the NCOUNT field to the total number of transfers minus 1.

g. If this is the last action for the DMA channel, set the transfer mode to the basic type (TMD = 1).
Otherwise, set the transfer mode to the ping-pong type (TMD = 3).

8. Enable data requests for the channel.

9. Set the DMA to fast mode using the FDMAEN bit in the SCONFIG module.

10. Enable the DMA channel using the CHENSET register.

11. (Optional) Enable the DMA channel interrupt.

12. Submit a request to start the transfer.

The DMA_Peri_to_Mem_to_Peri.c code example included in the software package demonstrates a ping-pong
DMA transfer by using the USART0 peripheral (transmit and receive) to receive 2 10-byte character sets from a
Terminal program on the PC using the CP210x USB-to-UART bridge on the MCU Card. When the second set is
received, a second DMA channel displays the received characters in the Terminal program on the PC. This code
example uses two different DMA channels due to the DMA peripheral crossbar mapping and since both the
USART0 receive and USART0 transmit features are used.

8. Using the DMA for a Simultaneous Peripheral-to-Memory-to-Peripheral
Transfer

A single DMA channel is unable to service more than one peripheral simultaneously. In addition, DMA channels
cannot automatically start or pause a transfer in another channel without core intervention.

The easiest way to perform a peripheral-to-memory-to-peripheral transfer (i.e., I2C-to-memory-to-UART) is to set
up several buffers in memory. Once the first peripheral transfers data to the first buffer, the DMA channel done
interrupt will occur, if enabled. Inside this interrupt service routine, firmware can start the first DMA channel to
transfer data from the source peripheral to a second buffer and set up a second DMA channel to transfer data from
the first buffer to the end peripheral.

The DTM module on SiM3L1xx devices allows these types of transfer to occur without core intervention.

AN666

Rev. 0.1 29

9. DTM Overview (SiM3L1xx Devices Only)

The DTM module collects DMA request signals from various peripherals and generates a series of master DMA
requests based on a state-driven configuration. This master request drives a set of DMA channels to perform
functions such as assembling and transferring communication packets to external radio peripherals. This capability
saves power by allowing the MCU to remain in low power modes such as PM2 during complex transfer operations.
A combination of simple and peripheral-scatter-gather DMA configurations can be used to perform complex
operations while limiting the memory requirements (for example, by implementing direct peripherals-to-peripheral
transfers).

Each DTM block supports up to 15 user-configurable states. Each state can be set up to run a certain number of
DMA operations from one peripheral (the source) to another (the destination), including memory areas such as
flash and RAM. Each state also has the ability to define two options for what the next state in the sequence will be,
dependent on the condition of the counters and other parameters in the DTM block.

Each DTM block is capable of driving up to four DMA channels (A, B, C and D), and each DTM state can be
configured to drive a particular request line to the DMA. This allows basic DMA operations to replace a long
sequence of peripheral-scatter-gather tasks in most applications, saving memory.

9.1. Counters
The DTM modules contain three different counters: a master counter, a state counter, and a timeout counter. The
16-bit master counter, represented in the MSTCOUNT register, can be initialized by firmware to track the number
of DMA requests that have occurred. MSTCOUNT is decremented on each DMA operation unless the active state
configuration specifies otherwise.

The 8-bit State counter, represented by the STCOUNT field in the CONTROL register, also decrements each time
a DMA request is generated. This is used to track the number of requests since the active state was last entered
(from 1 to 256). The STCOUNT field is automatically loaded with the value of STRELOAD in the state description
when a state is entered.

A 16-bit timeout counter is represented by the TOCOUNT field in the TIMEOUT register. An internal 8-bit prescaler
divides the APB clock frequency and TOCOUNT is decremented every 256 APB clock cycles. Each state can
selectively reload TOCOUNT and enable or disable the timeout counter while the state is active. If a TOCOUNT
reload is requested, the timeout counter will be reloaded from the TORELOAD field in the TIMEOUT register, and
the internal prescaler will reset. If TOCOUNT reaches 0 and the internal prescaler overflows, a timeout error is
declared and the DTM transitions to its DONE state. The TOERRI flag in the CONTROL register will be set and an
interrupt will be generated if enabled. When it is used, the length of the timeout is equal to 256 x (TRELOAD + 1)
APB clock cycles.

AN666

30 Rev. 0.1

9.1.1. State Machine Control

Each of the 15 available states in a DTM block has configuration information which defines the state operation
when it is active. States are set up by firmware in the RAM or flash region of the device, and when a state becomes
active, its information is read into the DTM block’s STATE register.

9.1.2. Source, Destination, and DTM Channel

The SRCMOD and DSTMOD fields define the source trigger and the destination trigger for the transfers that will
occur in the active state. The available sources and destinations are detailed in Table 10 and Table 11. If the
required DMA transfer is going to or from a memory location, the value 1111b (0xF) should be used in the
corresponding field.

Table 10. DTM Source Module Options

SRCMOD Source SRCMOD Source

0000 SPI0 Receive 1000 EPCA0 Capture

0001 SPI1 Receive 1001 ENCDEC0 Output

0010 AES0 Output 1010 Reserved

0011 Reserved 1011 Reserved

0100 USART0 Receive 1100 Reserved

0101 Reserved 1101 DMA0T0

0110 I2C0 Receive 1110 DMA0T1

0111 SARADC0 Output 1111 Memory Transfer (No Source)

Table 11. DTM Destination Module Options

DSTMOD Destination DSTMOD Destination

0000 SPI0 Transmit 1000 EPCA0 Capture

0001 SPI1 Transmit 1001 ENCDEC0 Input

0010 AES0 Data In 1010 Reserved

0011 AES0 XOR In 1011 Reserved

0100 USART0 Transmit 1100 Reserved

0101 Reserved 1101 DMA0T0

0110 I2C0 Transmit 1110 DMA0T1

0111 IDAC0 Input 1111 Memory Transfer (No Destination)

AN666

Rev. 0.1 31

When a given state is active, the DTM waits until both its source and destination peripherals have asserted their
DMA request signals, indicating that both are ready to transmit/receive DMA traffic. At this time, the DTM asserts
its master DMA request signal for the channel specified in the state’s DTMCHSEL field, causing the DMA engine to
perform the next task in that channel’s sequence of operation. This DMA task satisfies the source and destination
peripheral requests by moving data from the source to the destination. In general, the source and destination
peripherals will not be assigned to a DMA channel in the DMA crossbar, and all related DMA traffic will be
requested by the DTM.

9.1.3. State Transitions

Each state is associated with a number, 0 through 14. The number 15 is reserved for a DONE state, which
terminates DTM operations. The states define two possible paths for the next state, defined in the PRIST (primary
state) and SECST (secondary state) fields of the state structure. These two fields may be loaded with any valid
state value, including 15 (the DONE state). A simple representation of the DTM state transitions is shown in
Figure 13.

Figure 13. State Transition Diagram

When a state is entered, it becomes the active state. Its information is loaded from memory into the STATE register,
and its state number will be reported in the ST field of the CONTROL register. At the same time, the state counter
(STCOUNT) will be loaded with the value in the state’s STRELOAD field. While a state is active, the DTM will
manage the data transfer between the selected source and destination peripherals, using the selected DTM
channel to request DMA operations. The operation will last as long as the DMA is still actively transferring the data.
After the transfer is complete, the state counter is decremented. If the MSTDECEN bit in the state structure is set to
1, the master counter will also be decremented.

If the master counter is non-zero and the state counter is equal to zero, the state machine will transition to the
primary state defined by PRIST. If the master counter reaches zero and either the state counter is zero or
MSTDECEN = 1, the state machine will transition to the secondary state defined by SECST. Finally, if a timeout
error occurs (TOCOUNT reaches zero) when timeouts are enabled, or if a DMA error occurs for the selected
channel, the state machine will transition to the DONE state and generate the appropriate flags. Upon exit from a
state, the value of that state is loaded into the LASTST field in the CONTROL register.

In some scenarios, a state will need to remain active until MSTCOUNT reaches zero, even if there are more than
256 requests generated. In such cases, this is accomplished by setting the value of PRIST to the active state
number.

Active
State

DONE

Primary
State

(PRIST)

Secondary
State

(SECST)

State Counter = 0 and
Master Counter > 0

(State Counter = 0 or
MSTDECEN = 1) and
Master Counter = 0

DMA Error or
Timeout Event

AN666

32 Rev. 0.1

It is also possible to instruct a state to hold off any further transfer requests until an external pin input (specified by
the INHSEL field in the CONTROL register) is asserted. The DTMINH and INHSPOL fields in the state structure
configure this capability for the selected inhibit pin.

9.1.4. Interrupts

Within a state structure, the user can selectively enable timeout interrupts and state transition interrupts. The
timeout counter and its associated interrupt are enabled using the TOERRIEN flag. If TIOERRIEN is set,
TOCOUNT is loaded with the value of TORELOAD on entry into the state. If the TOCOUNT field reaches zero, the
TIOERRI interrupt flag will be set, and the state machine transitions to DONE.

The PRISTIEN and SECSTIEN flags enable interrupts upon transition to the primary and secondary states,
respectively. When either of these interrupts occurs, the DTMI interrupt flag will be set by hardware.

10. Using the DTM Module on SiM3L1xx Devices for Peripheral-to-Memory-
to-Peripheral Transfers

The DTM allows DMA channels to automatically chain without core intervention. When creating DTM code, it is
recommended to first start with the basic peripheral configuration and verify the peripheral is configured correctly
before adding DMA support. Once the DMA operation is verified, add the final DTM piece to create the full system.

To set up a DTM system:

1. Enable AHB and APB clocks to the DTM module.

2. Start with DTM/DMA channels disabled.

3. Configure the DMA channel or channels. Ensure the DMA crossbar maps the DMA channels to DTM
channels. Wait to enable the channels until after the DTM module is completely initialized.

4. Initialize the state fields for the DTM operation. For each state:

a. Set the DTM Channel for the state (A, B, C, or D).

b. Set the source field (SRCMOD).

c. Set the destination field (DSTMOD).

d. Select the next state for the primary state transition (PRIST).

e. Select the next state for the secondary state transition (SECST).

f. Set the number of DMA transfers for the state using the STRELOAD field.

g. Set any active interrupts or other options for the state.

5. Initialize the DTM module.

6. Clear all interrupts in the DTM module.

7. (Optional) Enable DTM module interrupts.

8. Enable the DTM module and DMA channels.

The DTM_Peri_to_Mem_to_Peri.c code example included in the software package demonstrates two basic DMA
transfers using the USART0 peripheral (transmit and receive) to receive and transmit a 20-byte character set from
and to a Terminal program on the PC using the CP210x USB-to-UART bridge on the MCU Card. The DTM
automatically starts the transmit DMA transfer after the receive DMA transfer, displaying the characters in the
Terminal program on the PC. This code example uses two different DMA and DTM0 channels for the two states S0
(receive) and S1 (transmit).

AN666

Rev. 0.1 33

Figure 14. DTM Peripheral-to-Memory-to-Peripheral Example

SiM3xxxx
Address Space (RAM)

DMA Channel 1

DMA Channel 0USART0 RX

USART0 TX

DTM Module

Channel A

Channel B

S0
(A)

DONE

S1
(B)

AN666

34 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

