

LTC1064-4M/883

Low Noise, 8th Order, Clock Sweepable Cauer Lowpass Filter

T-64-05

DESCRIPTION

The LTC1064-4M/883 is an 8th order, clock sweepable Cauer lowpass switched capacitor filter. An external TTL or CMOS clock programs the value of the filter's cutoff frequency. With pin 10 at V⁺, the f_{CUTOFF} ratio is 50:1; the filter has a Cauer response and with compensation the passband ripple is \leq 0.1dB. The stopband attenuation is 80dB at 2 × f_{CUTOFF}. Cutoff frequencies up to 100kHz can be achieved. With pin 10 at V⁻, the f_{CLOCK} to f_{-3dB} ratio is 100:1, the filter has a transitional Butterworth-Cauer response with lower noise and lower delay nonlinearity than the Cauer response. The stopband attenuation at 2.5 × f_{-3dB} is 92dB. Cutoff frequencies up to 50kHz can be achieved.

It features low noise and low harmonic distortion even when input voltages up to $3V_{RMS}$ are applied. Overall performance competes with equivalent multi op amp active realizations. The LTC1064-4M/883 is pin compatible with the LTC1064-1M/883, LTC1064-2M/883, and LTC1064-3M/883. The LTC1064-4/883 is manufactured using Linear Technology's enhanced LTCMOS $^{\text{TM}}$ silicon gate process.

The devices are processed to the requirements on MIL-STD-883 Class B to yield circuits usable in precision military applications.

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V ⁺ to V ⁻)	16.5V
Power Dissipation	
Operating Temperature Range	. −55°C to 125°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec.)	300°C

BURN-IN CIRCUIT

NOTES:

THE POWER SUPPLIES SHOULD BE BYPASSED BY A $0.1\mu F$ OR LARGER CAPACITOR CLOSE TO THE PACKAGE. THE CONNECTION BETWEEN PINS 7 AND 14 SHOULD BE MADE UNDER THE I.C. PACKAGE.

V+ = 7.5V TO 8.0V

 $V^- = -7.5V TO -8.0V$

CH6 = SQUARE WAVE, AMPLITUDE = 7.5V TO 8.0V

AND FREQUENCY = 1kHZ ±10%

1064-4M 8

PACKAGE/ORDER INFORMATION

[†] The suffix letter "C" of the part mark indicates compliance per MIL-STD 883, para 1.2.1.1.

TABLE 1: ELECTRICAL CHARACTERISTICS

T-64-05

 $V_S = \pm 7.5 \text{V}$, $f_{CLK} = 1 \text{MHz}$, $f_C = 20 \text{kHz}$ $R_L = 10 \text{k}\Omega$, TTL clock input, level unless otherwise specified.

PARAMETER	CONDITIONS	, ,,	25°C YP Max	SUB- GROUP	-55°C ≤ Min ty	••	SUB- GROUP	UNITS
Passband Gain	Referenced to 0dB, 1Hz to 1kHz	-0.5	0.1	1	-0.5	0.1	2,3	dB
Gain at –3dB Frequency	Referenced to Passband Gain	-0.4	0.7	1	-0.4	0.7	2,3	dB
Passband Ripple	0.1f _C to 0.95f _C Referenced to Passband Gain	0	0.75	1	0	0.75	2,3	dB
Stopband Attenuation	At 1.7f _{CUTOFF}	-56		1	-56		2,3	dB
Output Voltage Swing and Operating Input Voltage Range	$V_S = \pm 2.37V$ $V_S = \pm 5.0V$ $V_S = \pm 7.5V$	±1.1 ±3.1 ±5.0		4 4 4	±1.1 ±3.1 ±5.0		5,6 5,6 5,6	V V V
Output DC Offset	$V_S = \pm 7.5V$		±160	1				mV
Input Impedance		9		1				kΩ
Power Supply Current	$V_S = \pm 2.37V$, $F_{CLK} = 1 MHz$ $V_S = \pm 5.0V$, $F_{CLK} = 1 MHz$ $V_S = \pm 8.0V$, $F_{CLK} = 1 MHz$		22 23 28	1 1		22 26 32	2,3 2,3 2,3	mA mA mA
Power Supply Voltage Range		±2.37	±7.5	1	±2.37	±7.5	2,3	V

TABLE 2: ELECTRICAL TEST REQUIREMENTS

MIL-STD-883 TEST REQUIREMENTS	SUBGROUP
Final Electrical Test Requirements (Method 5004)	1*,2,3,4,5,6
Group A Test Requirements (Method 5005)	1,2,3,4,5,6
Group C and D End Point Electrical Parameters (Method 5005)	1*

^{*} PDA Applies to subgroup 1. See PDA Test Notes.

PDA Test Notes

The PDA is specified as 5% based on failures from group A, subgroup 1, tests after cooldown as the final electrical test in accordance with method 5004 of MIL-STD-883 Class B. The verified failures of group A, subgroup 1, after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent for the lot.

Linear Technology Corporation reserves the right to test to tighter limits than those given.

I.D. No. 66-10-0111 Rev. A 03/31/92