

System ACE™ MPM Solution

DS087 (v1.2) June 7, 2002

Advance Product Specification

Summary

- System level, high capacity, pre-configured solution for Virtex[™] Series FPGAs, Virtex-II Series Platform FPGAs, and Spartan[™] FPGAs
- Industry standard Flash memory die combined with Xilinx controller technology in a single package
- Effortless density migration:
 - XCCACEM16-BG388I (16 Megabit (Mb))
 - XCCACEM32-BG388I (32 Mb)
 - XCCACEM64-BG388I (64 Mb)
- All densities are available in the 388-pin Ball Grid Array package
- VCC I/O: 1.8V, 2.5V, and 3.3V
- Configuration rates up to 152 Mb per second (Mb/s)
- Flexible configuration solution:
 - SelectMAP (control up to four FPGAs)
 - Slave-Serial
 - Concurrent Slave-Serial (up to eight separate chains)

- Patented compression technology (up to 2x compression)
- JTAG interface allows:
 - Access to the standard Flash memory
 - Boundary Scan testing
- Native interface to the standard Flash memory is provided for:
 - External parallel programming
 - Processor access to unused Flash memory locations
- Supports up to eight separate design sets (selectable by mode pins or via JTAG), enabling systems to reconfigure FPGAs for different functions
- Compatible with IEEE Standard 1532
- User-friendly software to format and program the bitstreams into the standard Flash via the patented Flash programming engine
- Internet Reconfigurable Logic (IRL) upgradeable system

Description

The System ACE Multi-Package Module (MPM) solution addresses the need for a space-efficient, pre-engineered, high-density configuration solution in multiple FPGA systems. The System ACE technology is a ground-breaking in-system programmable configuration solution that provides substantial savings in development effort and cost per bit over traditional PROM and embedded solutions for high capacity FPGA systems. As shown in Figure 1, the System ACE MPM solution is a multi-package module that includes the System ACE MPM controller, a configuration PROM, and an AMD Flash Memory.

The System ACE MPM has four major interfaces. (See Figure 2.) The boundary scan JTAG interface is provided for boundary scan test and boundary-scan-based Flash memory programming. The system control interface provides an input for the system clock, design set selection pins, system configuration control signals, and system configuration status signals.

The native Flash memory interface provides direct read and write access to the Flash memory unit. The target FPGA interface provides the signals to configure target FPGAs via the Slave-Serial, concurrent Slave-Serial, or SelectMAP configuration modes.

Separate power pins provide voltage compatibility control for the target FPGA configuration interface and for the system control/status interface.

See Figure 3 for a complete view of the components and schematic of the signals in the System ACE MPM.

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

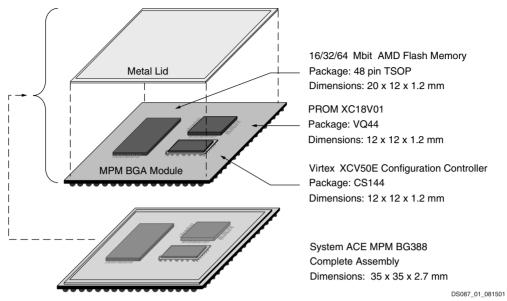


Figure 1: System ACE MPM Assembly

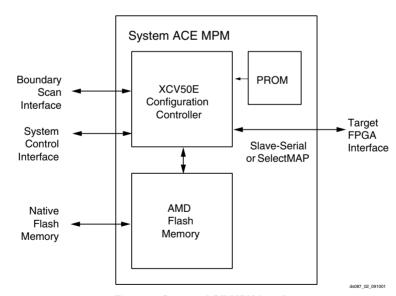
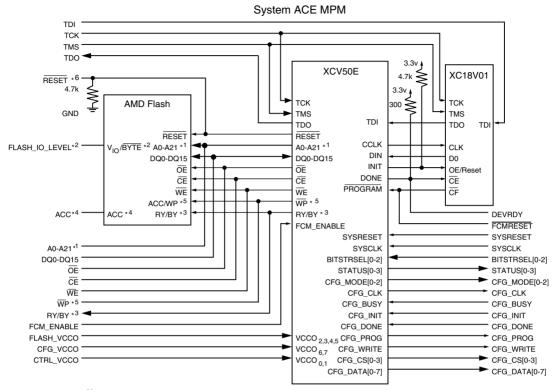



Figure 2: System ACE MPM Interfaces

^{*1} A21 for XCCACEM64 only; A20 for XCCACEM32 and XCCACEM64 only.

DS087_03_091701

Figure 3: System ACE MPM schematic

 $^{^{*2}}$ V_{IO} for XCCACEM64; $\stackrel{\cdot}{\text{BYTE}}$ for XCCACEM16 and XCCACE32.

^{*3} XCCACEM16 and XCCACEM32 only.

^{*4} XCCACEM64 only.

^{*5} WP on XCCACEM64; ACC/WP on XCCACEM32. Do not apply V_{HH} to ACC/WP.

^{*6} Do not apply V_{ID} to RESET.

Pin Descriptions

This section provides native Flash interface, Boundary Scan, and target FPGA configuration pinout information.

Native Flash Interface Pins

All of the native Flash memory pins are routed to pins on the System ACE MPM ball-grid-array. Thus, the Flash memory is available to the system for direct read and write access with a few restrictions. See Note 1 and Table 1 for descriptions of the restrictions.

Notes:

 All of the native Flash memory interface pins are connected to the System ACE MPM controller (except where explicitly noted in the pin description). The FCM_ENABLE pin must be held Low to externally access the Flash memory without contention with the System ACE MPM controller.

Table 1: Native Flash Memory Interface Pins

Pin Name	Pin Type	Description	
A0-A21	I/O	Flash memory address bus. A21 exists on the XCCACEM64 only. A20 exists on the XCCACEM32 and XCCACEM64 only.	
DQ0-DQ15	I/O	Flash memory data bus. DQ15 becomes the A-1 pin in the XCCACEM16 and XCCACEM32 when the BYTE mode is active.	
RESET	I/O	Flash memory hardware reset. When asserted, all Flash operations are immediately terminated and Flash is reset to read mode. When RESET and CE are held High, the Flash memory is put into standby mode. Do not apply V _{ID} to the RESET pin. The RESET is connected to the System ACE MPM controller that has a maximum tolerance of 3.6 V.	
CE	I/O	Flash memory chip enable. When RESET and CE are held High, the Flash memory is put into standby mode.	
ŌĒ	I/O	Flash memory output enable.	
WE	I/O	Flash memory write enable.	
RY/BY	Output	Flash memory ready/busy signal. Open-drain output. When Low, the RD/B signal indicates that the Flash is actively erasing, programming, or resetting XCCACEM16 and XCCACEM32 only.	
WP	I/O	Flash memory hardware write protect.	
ACC	Input	Flash memory accelerated mode pin. Do not apply V _{HH} to the XCCACEM32 WP/ACC pin. The XCCACEM32 WP/ACC pin is connected to the System ACE MPM controller that has a maximum tolerance of 3.6 V. The XCCACEM64 ACC pin is independent of the rest of the System ACE MPM and may be used to put the Flash memory into accelerated program operation.	
FLASH_IO_LEVEL	Input	Flash memory $\rm V_{IO}$ pin on the XCCACEM64 only. This pin must be connecte to 3.3V for compatibility with the System ACE MPM controller.	
BYTE	Input	Flash memory byte-wide data bus mode. XCCACEM16 and XCCACEM32 only. This pin must be connected to 3.3V for compatibility with the System ACE MPM controller and thus only the 16-bit, word mode is available for accessing the Flash memory in the system.	

Boundary Scan Pins

The System ACE MPM controller (Virtex-E XCV50E) and the System ACE MPM controller PROM (XC18V01) are both IEEE Standard 1149.1 compatible devices. The System ACE MPM connects these devices into an internal scan

chain comprised of the XC18V01 device followed by the XCV50E device. The internal scan chain is accessible through the boundary scan test access port (TAP) on the BG388 package. See Table 2.

Table 2: IEEE 1149.1 Boundary Scan Pins

Pin Name	Pin Type	Description
тск	Input	IEEE 1149.1 test clock pin. The System ACE MPM TCK pin is connected to the XCV50E and XC18V01 TCK pins. By default, the XCV50E has an internal pull-up resistor on its TCK pin.
TMS	Input	IEEE 1149.1 test mode select pin. The System ACE MPM TMS pin is connected to the XCV50E and XC18V01 TMS pins which have internal pull-up resistors.
TDI	Input	IEEE 1149.1 test data input pin. The System ACE MPM TDI is connected to the XC18V01 TDI pin which has an internal pull-up resistor.
TDO	Output	IEEE 1149.1 test data output pin. The System ACE MPM TDO pin is connected to the XCV50E TDO pin which by default has an internal pull-up resistor.

Target FPGA Configuration Pins

Table 3 provides target FPGA configuration pins.

Table 3: Target FPGA Configuration Pins

Pin Name	Pin Type	Description
CFG_DATA[0]	Output	For Slave-Serial configuration mode, CFG_DATA[0] is the serial data signal for Serial-Slave Chain 0 and is connected to DIN of the first FPGA in the Slave-Serial Chain 0. For Slave-SelectMAP configuration mode, CFG_DATA[0] is the data bit 0 on the SelectMAP bus and is connected to D0 on all target FPGAs.
CFG_DATA[1]	Output	For Slave-Serial configuration mode, CFG_DATA[1] is the serial data signal for Serial-Slave Chain 1 and is connected to DIN of the first FPGA in the Slave-Serial Chain 1. For Slave-SelectMAP configuration mode, CFG_DATA[1] is the data bit 1 on the SelectMAP bus and is connected to D1 on all target FPGAs.
CFG_DATA[2]	Output	For Slave-Serial configuration mode, CFG_DATA[2] is the serial data signal for Serial-Slave Chain 2 and is connected to DIN of the first FPGA in the Slave-Serial Chain 2. For Slave-SelectMAP configuration mode, CFG_DATA[2] is the data bit 2 on the SelectMAP bus and is connected to D2 on all target FPGAs.
CFG_DATA[3]	Output	For Slave-Serial configuration mode, CFG_DATA[3] is the serial data signal for Serial-Slave Chain 3 and is connected to DIN of the first FPGA in the Slave-Serial Chain 3. For Slave-SelectMAP configuration mode, CFG_DATA[3] is the data bit 3 on the SelectMAP bus and is connected to D3 on all target FPGAs.
CFG_DATA[4]	Output	For Slave-Serial configuration mode, CFG_DATA[4] is the serial data signal for Serial-Slave Chain 4 and is connected to DIN of the first FPGA in the Slave-Serial Chain 4. For Slave-SelectMAP configuration mode, CFG_DATA[4] is the data bit 4 on the SelectMAP bus and is connected to D4 on all target FPGAs.
CFG_DATA[5]	Output	For Slave-Serial configuration mode, CFG_DATA[5] is the serial data signal for Serial-Slave Chain 5 and is connected to DIN of the first FPGA in the Slave-Serial Chain 5. For Slave-SelectMAP configuration mode, CFG_DATA[5] is the data bit 5 on the SelectMAP bus and is connected to D5 on all target FPGAs.

Table 3: Target FPGA Configuration Pins (Continued)

Pin Name	Pin Type	Description
CFG_DATA[6]	Output	For Slave-Serial configuration mode, CFG_DATA[6] is the serial data signal for Serial-Slave Chain 6 and is connected to DIN of the first FPGA in the Slave-Serial Chain 6. For Slave-SelectMAP configuration mode, CFG_DATA[6] is the data bit 6 on the SelectMAP bus and is connected to D6 on all target FPGAs.
CFG_DATA[7]	Output	For Slave-Serial configuration mode, CFG_DATA[7] is the serial data signal for Serial-Slave Chain 7 and is connected to DIN of the first FPGA in the Slave-Serial Chain 7. For Slave-SelectMAP configuration mode, CFG_DATA[7] is the data bit 7 on the SelectMAP bus and is connected to D7 on all target FPGAs.
CFG_MODE[0]	Output	The CFG_MODE pins set the configuration mode on the target FPGAs. Connect CFG_MODE[0] to the M0 pin on all target FPGAs.
CFG_MODE[1]	Output	The CFG_MODE pins set the configuration mode on the target FPGAs. Connect CFG_MODE[1] to the M1 pin on all target FPGAs.
CFG_MODE[2]	Output	The CFG_MODE pins set the configuration mode on the target FPGAs. Connect CFG_MODE[2] to the M2 pin on all target FPGAs.
CFG_CCLK	Output	CFG_CCLK is the configuration clock source for the target FPGAs. The CFG_CCLK is derived from the SYSCLK. The CFG_CCLK frequency is half the SYSCLK frequency. Connect CFG_CCLK to the CCLK pin on all target FPGAs.
CFG_PROG	Output	CFG_PROG is pulsed Low at the beginning of the configuration download to reset the configuration state of the target FPGAs. CFG_PROG is connected to the PROG_B pin on all target FPGAs.
CFG_INIT	Input	Target FPGA INIT monitor pin. At the start of the configuration process, the System ACE MPM controller waits for INIT to go High before initiating delivery of configuration data through the CFG_DATA pins. CFG_INIT is connected to the INIT pin on all target FPGAs.
CFG_BUSY	Input	When CFG_BUSY is High, the CFG_DATA outputs are held. If the target FPGA configuration mode is Slave-SelectMAP and if the CFG_CCLK is greater than 50 MHz, connect the CFG_BUSY pin to the BUSY pin on all target FPGAs. Otherwise, pull-down the CFG_BUSY pin to GND.
CFG_DONE	Input	CFG_DONE monitors the DONE status on all target FPGAs. Connect the CFG_DONE to the DONE pin on all target FPGAs. DONE must be pulled High with an external 330- Ω pull-up resistor. The BitGen option DriveDONE should be left in the default "NO" setting when generating bitstreams for Xilinx FPGAs.
CFG_WRITE	Output	Slave-SelectMAP write-enable pin. Connect the CFG_WRITE pin to the RDWR_B pin on all target FPGAs.
CFG_CS[0]	Output	Slave-SelectMAP chip-enable for target FPGA 0. Connect the $\overline{\text{CFG_CS[0]}}$ pin to the CS_B pin on target FPGA 0.
CFG_CS[1]	Output	Slave-SelectMAP chip-enable for target FPGA 1. Connect the $\overline{\text{CFG_CS[1]}}$ pin to the CS_B pin on target FPGA 1.
CFG_CS[2]	Output	Slave-SelectMAP chip-enable for target FPGA 2. Connect the $\overline{\text{CFG_CS[2]}}$ pin to the CS_B pin on target FPGA 2.
CFG_CS[3]	Output	Slave-SelectMAP chip-enable for target FPGA 3. Connect the CFG_CS[3] pin to the CS_B pin on target FPGA 3.

System Control and Status Pins

Table 4 provides system control and status pins.

Table 4: System Control and Status Pins

Pin Name	Pin Type	Description
FCM_ENABLE	Input	System ACE MPM controller enable. When this pin is held Low, all of the System ACE MPM controller (XCV50E) pins tied to the Flash memory are 3-stated allowing external peripherals access to Flash memory without contention.
FCMRESET	Input	System ACE MPM FPGA reset pin. The FCMRESET pin is connected to the XCV50E PROGRAM pin. Applying a Low pulse to the FCMRESET resets the XCV50E and forces the XCV50E to reconfigure itself from the XC18V01 PROM. (The XCV50E automatically configures itself from the XC18V01 PROM at power-up.)
DEVRDY	Output	System ACE MPM FPGA DONE pin. The DEVRDY pin is connected to the XCV50E DONE pin. When DEVRDY is High, the XCV50E is configured and ready for operation.
SYSCLK	Input	SYSCLK is the system clock input for the System ACE MPM control logic.
SYSRESET	Input	Hold SYSRESET High for at least 10 SYSCLK cycles to reset the System ACE MPM control logic. Upon release from the reset condition, the System ACE MPM initiates the download procedure to the target FPGAs.
BITSTRSEL[2-0]	Input	The BITSTRSEL pins determine which of the eight configuration data streams to download to the target FPGA.
STATUS[3-0]	Output	The STATUS pins indicate the status of the System ACE MPM control logic.

Power and Ground Pins

The System ACE MPM requires at least two power supplies: 1.8V supplies power to the System ACE MPM configuration controller (an XCV50E) core; and 3.3V supplies power to the Flash memory and configuration controller PROM (an XC18V01). Additional power supplies may be

required for the output voltage compatibility pins: FLASH_VCCO, CFG_VCCO, and CTRL_VCCO. See Figure 4 and Table 5 for a description of the System ACE MPM power pins.

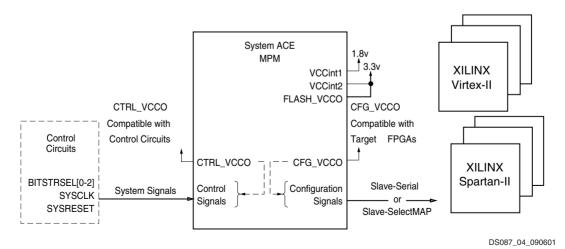


Figure 4: Power Pins

Table 5: Power and Ground Pins

Pin Name	Pin Type	Description
VCCint1	Power	1.8V power supply pins for the Virtex-E XCV50E configuration controller core. The 1.8V power supply should rise prior to or simultaneously to the FLASH_VCCO, CTRL_VCCO, and CFG_VCCO power supplies.Otherwise, the XCV50E device might draw excessive current.
VCCint2	Power	3.3V power supply pins for the AMD Flash memory and the XC18V01 PROM.
FLASH_VCCO	Power	3.3V power supply for the I/O banks connecting the Virtex-E XCV50E controller to the AMD Flash memory.
CFG_VCCO	Power	Configurable power supply for the I/O banks on the target FPGA configuration interface. Connect this power pin to a voltage that is compatible with the target FPGA configuration pins.
CTRL_VCCO	Power	Configurable power supply for the I/O banks on the system interface. Connect this power pin to a voltage that is compatible with the system control and status monitor signals.
GND	Ground	Ground.

Pinout

Table 6 provides System ACE MPM pinout. Unlisted BGA sites are no connects.

Table 6: System ACE MPM Pinout

Pin Name	XCCACEM16-BG388I	XCCACEM32-BG388I	XCCACEM64-BG388I
A0	AF8	AF8	AF8
A1	AF4	AF4	AF4
A2	AF3	AF3	AF3
A3	AF2	AF2	AF2
A4	AE4	AE4	AE4
A5	AE3	AE3	AE3
A6	AE1	AE1	AE1
A7	AD2	AD2	AD2
A8	W1	W1	W1
A9	W2	W2	W2
A10	V1	V1	V1
A11	V2	V2	V2
A12	U1 U1		U1
A13	U2	U2	U2
A14	T1	T1	T1
A15	T2	T2	T2
A16	R25	R25	R25
A17	AD1	AD1	AD1
A18	AC2	AC2	AC2

Table 6: System ACE MPM Pinout (Continued)

Pin Name	XCCACEM16-BG388I	XCCACEM32-BG388I	XCCACEM64-BG388I
A19	Y1	Y1	AC1
A20	n/a	Y2	Y2
A21	n/a	n/a	Y1
DQ0	AD26	AD26	AD26
DQ1	AC25	AC25	AC25
DQ2	AB26	AB26	AB26
DQ3	AA26	AA26	AA26
DQ4	Y26	Y26	Y26
DQ5	W26	W26	W26
DQ6	U26	U26	U26
DQ7	T26	T26	T26
DQ8	AD25	AD25	AD25
DQ9	AC26	AC26	AC26
DQ10	AB25	AB25	AB25
DQ11	AA25	AA25	AA25
DQ12	Y25	Y25	Y25
DQ13	W25	W25	W25
DQ14	U25	U25	U25
DQ15	T25	T25	T25
RESET	AA2	AA2	AA2
CE	AE23	AE23	AE23
ŌĒ	AE26	AE26	AE26
WE	AA1	AA1	AA1
RY/BY	AC1	AC1	n/a
WP	n/a	AB2	AB2
ACC	n/a	n/a	AB1
FLASH_IO_LEVEL	R26	R26	R26
FCM_ENABLE	B7	B7	B7
FCMRESET	K26	K26	K26
DEVRDY	N26	N26	N26
TCK	G26	G26	G26
TMS	A3	A3	A3
TDI	F26	F26	F26
TDO	A15	A15	A15
SYSCLK	A9	A9	A9
SYSRESET	B8	B8	B8

Table 6: System ACE MPM Pinout (Continued)

Pin Name	XCCACEM16-BG388I	XCCACEM32-BG388I	XCCACEM64-BG388I
BITSTRSEL[0]	A6	A6	A6
BITSTRSEL[1]	B5	B5	B5
BITSTRSEL[2]	A5	A5	A5
STATUS[0]	A10	A10	A10
STATUS[1]	B9	B9	B9
STATUS[2]	B6	B6	B6
STATUS[3]	A7	A7	A7
CFG_DATA[0]	J2	J2	J2
CFG_DATA[1]	J1	J1	J1
CFG_DATA[2]	H3	H3	H3
CFG_DATA[3]	G2	G2	G2
CFG_DATA[4]	H2	H2	H2
CFG_DATA[5]	H1	H1	H1
CFG_DATA[6]	J3	J3	J3
CFG_DATA[7]	G3	G3	G3
CFG_MODE[0]	H26	H26	H26
CFG_MODE[1]	E1	E1	E1
CFG_MODE[2]	F2	F2	F2
CFG_CCLK	K1	K1	K1
CFG_BUSY	G1	G1	G1
CFG_INIT	K3	K3	K3
CFG_PROG	K2	K2	K2
CFG_DONE	B3	B3	B3
CFG_WRITE	L1	L1	L1
CFG_CS[0]	B1	B1	B1
CFG_CS[1]	D1	D1	D1
CFG_CS[2]	C1	C1	C1
CFG_CS[3]	A1	A1	A1
CTRL_VCCO	A4, A16, A11	A4, A16, A11	A4, A16, A11
CFG_VCCO	M1, B4, F1	M1, B4, F1	M1, B4, F1
FLASH_VCCO	B14, J26, L26, AF13, N1, AF9	B14, J26, L26, AF13, N1, AF9	B14, J26, L26, AF13, N1, AF9
VCCint1	C3, C7, C8, C9, C10, D6, D7, D8,	C3, C7, C8, C9, C10, D6, D7, D8,	C3, C7, C8, C9, C10, D6, D7, D8,
	D13, D14, E4, F4, K4, L2, M2, M3	D13, D14, E4, F4, K4, L2, M2, M3	D13, D14, E4, F4, K4, L2, M2, M3

Table 6: System ACE MPM Pinout (Continued)

Pin Name	XCCACEM16-BG388I	XCCACEM32-BG388I	XCCACEM64-BG388I
VCCint2	AA23, AB4, AB23, AC4, AC11, AC12, AC13, AC18, AC19, AC20, D17, D18, D21, D22, D23, E23, H23, J23, N23, P23, R4, T4, U4, V26, Y23	AA23, AB4, AB23, AC4, AC11, AC12, AC13, AC18, AC19, AC20, D17, D18, D21, D22, D23, E23, H23, J23, N23, P23, R4, T4, U4, V26, Y23	AA23, AB4, AB23, AC4, AC11, AC12, AC13, AC18, AC19, AC20, D17, D18, D21, D22, D23, E23, H23, J23, N23, P23, R4, T4, U4, V26, Y23
GND	A2, A8, A26, AA3, AB24, AD16, AD22, AE2, AE11, AE12, AE18, AE22, AE25, AF1, AF26, B15, B19, B22, B25, D4, D9, D10, D11, F23, G4, H25, J4, K23, L4, L11, L12, L13, L14, L15, L16, M4, M11, M12, M13, M14, M15, M16, M23, N11, N12, N13, N14, N15, N16, P2, P11, P12, P13, P14, P15, P16, R1, R11, R12, R13, R14, R15, R16, R23, T11, T12, T13, T14, T15, T16, T23, V25	A2, A8, A26, AA3, AB24, AD16, AD22, AE2, AE11, AE12, AE18, AE22, AE25, AF1, AF26, B15, B19, B22, B25, D4, D9, D10, D11, F23, G4, H25, J4, K23, L4, L11, L12, L13, L14, L15, L16, M4, M11, M12, M13, M14, M15, M16, M23, N11, N12, N13, N14, N15, N16, P2, P11, P12, P13, P14, P15, P16, R1, R11, R12, R13, R14, R15, R16, R23, T11, T12, T13, T14, T15, T16, T23, V25	A2, A8, A26, AA3, AB24, AD16, AD22, AE2, AE11, AE12, AE18, AE22, AE25, AF1, AF26, B15, B19, B22, B25, D4, D9, D10, D11, F23, G4, H25, J4, K23, L4, L11, L12, L13, L14, L15, L16, M4, M11, M12, M13, M14, M15, M16, M23, N11, N12, N13, N14, N15, N16, P2, P11, P12, P13, P14, P15, P16, R1, R11, R12, R13, R14, R15, R16, R23, T11, T12, T13, T14, T15, T16, T23, V25

Configuration Overview

The System ACE MPM is engineered for high-speed configuration of high-density FPGAs. Multiple configuration modes are supported to target FPGAs including Concurrent Slave-Serial mode, Slave-SelectMAP mode, and Slave-Parallel mode. The System ACE MPM handles storage of up to eight separate configuration data sets. Each data set can be optionally compressed to reduce the overall storage requirements. One default data set is automatically downloaded to the target FPGAs at system power-up. Any one of the eight data sets can be selected to reconfigure the target FPGAs at any time during system operation.

Configuration Modes

The System ACE MPM supports high-speed FPGA configuration via the Slave-Serial or Slave-SelectMAP configuration modes.

The System ACE MPM solution is a pre-engineered storage and delivery system with direct support for the high-density and high-speed configuration needs of the Virtex-II family. For example, the System ACE MPM can configure a Virtex-II XC2V6000, which requires 19,759,968 configuration bits, via Slave-Serial mode in 300 milliseconds and via Slave-SelectMAP mode in 130 milliseconds. In fact, the System ACE MPM can configure two XC2V6000 devices concurrently via Slave-Serial mode in 300 milliseconds. See Table 7 for maximum configuration bit rates. See Table 8 for FPGA configuration compatibility and cross-reference. See Table 9 for System ACE MPM and FPGA configuration signal cross-reference.

Table 7: Maximum Configuration Bit Rates

Configuration Mode	Maximum System Clock Rate (SYSCLK)	Maximum Configuration Clock (CFG_CCLK) Rate (at Max SYSCLK Rate)	Average Configuration Clock Rate (at Max SYSCLK Rate)	Maximum Average Combined Configuration Bit Rate
Slave-SelectMAP	133 MHz	44 MHz	19 MHz	152 Mb/s
Slave-Serial	133 MHz	66 MHz	66 MHz	66 Mb/s
2 Concurrent Slave-Serial Chains	133 MHz	66 MHz	66 MHz	133 Mb/s (66 Mb/s per chain)
3 - 4 Concurrent Slave-Serial Chains	133 MHz	66 MHz	38 MHz	152 Mb/s (38 Mb/s per chain)
5 - 8 Concurrent Slave-Serial Chains	133 MHz	66 MHz	19 MHz	152 Mb/s (19 Mb/s per chain)

Table 8: FPGA Configuration Compatibility and Cross-Reference

General Description	Clock Source	Data Path	Delivery Method	Virtex-II	Virtex Virtex-E	Spartan-II
Serial Configuration Mode	External	1-bit	Cascade through FPGAs in daisy-chain style	Slave-Serial	Slave-Serial	Slave-Serial
Parallel Configuration Mode	External	8-bits	Chip-selected device on configuration data bus	Slave- SelectMAP	SelectMAP	Slave-Parallel

Table 9: System ACE MPM and FPGA Configuration Signal Cross-Reference

FPGA Configuration Signal	System ACE MPM	Virtex-II	Virtex/ Virtex-E	Spartan-II
Configuration Mode	CFG_MODE[2:0]	M2, M1, M0	M2, M1, M0	M2, M1, M0
Configuration Clock	CFG_CLK	CCLK	CCLK	CCLK
Configuration Data	CFG_DATA[7:0]	D7, D6, D5, D4, D3, D2, D1, DIN/D0	D7, D6, D5, D4, D3, D2, D1, DIN/D0	D7, D6, D5, D4, D3, D2, D1, DIN/D0
Configuration Reset	CFG_PROG	PROG_B	PROGRAM	PROGRAM
Configuration	CFG_INIT	INIT_B	INIT	INIT
Configuration Busy	CFG_BUSY	BUSY	BUSY	BUSY

CS

Table 9. System ACE MP	Table 9. System ACE MPM and FPGA Configuration Signal Cross-Reference					
FPGA Configuration Signal	System ACE MPM	Virtex-II	Virtex/ Virtex-E	Spartan-II		
Configuration Done	CFG_DONE	DONE	DONE	DONE		
SelectMAP/Slave- Parallel Bus Read/Write Signal	CFG_WRITE	RDWR_B	WRITE	WRITE		

CS B

Table 9: System ACE MPM and FPGA Configuration Signal Cross-Reference

CFG CS[3:0]

Slave-Serial

Signal

SelectMAP/Slave-

Parallel Bus Chip Select

Similar to the Xilinx PROM solution, the System ACE MPM is a single package solution that supports the configuration of a single, cascaded chain of Slave-Serial FPGAs. With the maximum configuration clock rate of 66 MHz, the System ACE MPM is twice as fast as the nearest Xilinx PROM configuration solution in the Slave-Serial mode.

The System ACE MPM has additional support for concurrently configuring multiple chains of Slave-Serial FPGAs. Multiple data output pins on the System ACE MPM can concurrently supply bitstreams for two to eight Slave-Serial FPGA chains. Although each Slave-Serial chain has a maximum configuration clock rate of 66 MHz, the maximum bit delivery rate of 66 Mb/s is maintained across all concurrent Slave-Serial FPGA chains up to the cumulative maximum of 152 Mb/s. (152 Mb/s is the maximum read rate from the AMD Flash memory in the System ACE MPM.)

In the Concurrent Slave-Serial configuration mode, the bitstreams for the individual Slave-Serial chains are interleaved and optimized for concurrent configuration of two, four, or eight Slave-Serial FPGA chains. Configuration time and storage requirements are optimal when the data stream sizes are equivalent across all concurrent Slave-Serial FPGA chains. The connectivity between the System ACE MPM and Slave-Serial FPGA chain is similar to the connectivity between a Xilinx PROM and a Slave-Serial FPGA chain. All configuration signals between Concurrent Slave-Serial FPGA chains are common except that data for the first chain originates from the System ACE MPM CFG_DATA[0] pin, the data for the second chain originates from the System ACE MPM CFG DATA[1] pin, etc. See Figure 5 for a schematic of the Slave-Serial configuration signal connections, and see Table 10 for a list of the Slave-Serial configuration signals. The voltage compatibility for the System ACE MPM configuration interface is configurable via the CFG_VCCO pin. CFG_VCCO should be connected to a voltage level that is compatible with the target FPGAs. Typically, CFG VCCO is connected to either 3.3V or 2.5 V. Consult the target FPGA data sheet for an appropriate configuration signal voltage level.

CS

Identical configuration of multiple target FPGAs from one bitstream can be achieved through the appropriate configuration signal connections. Figure 7 shows an example of two FPGAs that are identically configured from a single bitstream. Table 10 provides the Slave-Serial configuration signals.

Configuration Modes

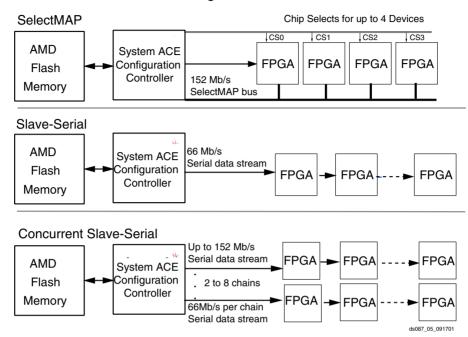
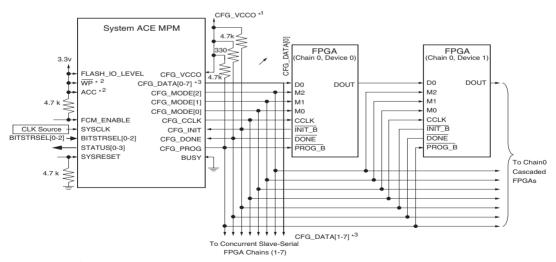



Figure 5: System ACE MPM Configuration Modes

 $^{^{*}}$ Supply voltage to CFG_VCCO that is compatible with the FPGA configuration pins.

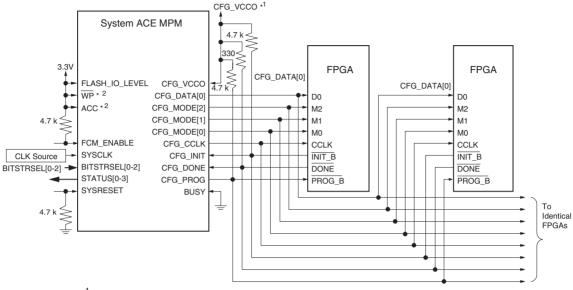

DS087_05_091201

Figure 6: Slave-Serial Configuration Mode

^{*2} Only /WP on XCCACEM16; Combined ACC/WP on XCCACEM32; Separate /WP and ACC on XCCACEM64.

^{*3} Use CFG_DATA[0] for systems with one slave-serial chain; Use CFG_DATA[0-1] for systems with two concurrent slave-serial chains; Use CFG_DATA[0-7] for systems with eight concurrent slave-serial chains; Use CFG_DATA[0-7] for systems with eight concurrent slave-serial chains.

^{* 1} Supply voltage to CFG_VCCO that is compatible with the FPGA configuration pins.

DS087_07_091701

Figure 7: Example Slave-Serial Configuration for Identically Configured Xilinx FPGAs

Table 10: Slave-Serial FPGA Configuration Signals

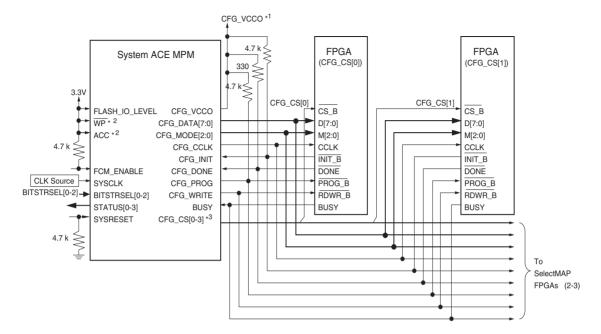
System ACE MPM	Single Slave-Serial Chain	Two Slave-Serial Chains	Four Slave-Serial Chains	Eight Slave-Serial Chains
CFG_MODE[0]	M0 on all FPGAs			
CFG_MODE[1]	M1 on all FPGAs			
CFG_MODE[2]	M2 on all FPGAs			
CFG_CCLK	CCLK on all FPGAs			
CFG_PROG	PROG_B on all FPGAs			
CFG_INIT	INIT_B on all FPGAs			
CFG_DONE	DONE on all FPGAs			
CFG_DATA[0]	DIN on first FPGA of Chain 0			
CFG_DATA[1]		DIN on first FPGA of Chain 1	DIN on first FPGA of Chain 1	DIN on first FPGA of Chain 1
CFG_DATA[2]			DIN on first FPGA of Chain 2	DIN on first FPGA of Chain 2
CFG_DATA[3]			DIN on first FPGA of Chain 3	DIN on first FPGA of Chain 3

^{*2} Combined ACC/WP on XCCACEM32; Separate WP and ACC on XCCACEM64.

Table 10: Slave-Serial FPGA Configuration Signals (Continued)

System ACE MPM	Single Slave-Serial Chain	Two Slave-Serial Chains	Four Slave-Serial Chains	Eight Slave-Serial Chains
CFG_DATA[4]				DIN on first FPGA of Chain 4
CFG_DATA[5]				DIN on first FPGA of Chain 5
CFG_DATA[6]				DIN on first FPGA of Chain 6
CFG_DATA[7]				DIN on first FPGA of Chain 7

Although Table 10 lists configuration signals for only one, two, four, or eight Slave-Serial chain systems, any number of Slave-Serial chains from one to eight are supported in the System ACE software. The System ACE software assigns the data streams for each Slave-Serial chain starting from CFG_DATA[0] up to CFG_DATA[N-1] where N is the number of Slave-Serial chains in the system.


Slave-SelectMAP/Slave-Parallel

The System ACE MPM conveniently supports high-speed, sequential configuration of up to four Xilinx FPGAs via the 8-bit-wide SelectMAP configuration bus or four Spartan-II devices via the 8-bit-wide Slave-Parallel bus. The System ACE MPM generates a maximum configuration clock rate of 19 MHz. The maximum bit delivery rate is 152 Mb/s. (152 Mb/s is the maximum read rate from the AMD Flash memory in the System ACE MPM.)

The connectivity between the System ACE MPM and the FPGAs on the SelectMAP bus is similar to the connectivity between a Xilinx PROM and a Slave-SelectMAP FPGA with the addition of the CFG_WRITE and separate CFG_CS (chip select) signals. All configuration signals from the System ACE MPM are common to all of the target FPGAs on the SelectMAP bus, except that the CS_B signal of the first FPGA must be connected to the System ACE MPM CFG_CS[0] pin, and the CS_B signal of the second FPGA must be connected to the System ACE MPM CFG_CS[1] pin, etc. See Figure 8 for a schematic diagram of the Slave-SelectMAP configuration connections, and Table 11 for a list of the Slave-SelectMAP connections for up to four target FPGAs.

The Spartan-II Slave-Parallel mode has the same structure and protocol as the Slave-SelectMAP mode. Therefore, the Slave-SelectMAP figure and table apply to the Spartan-II Slave-Parallel mode with the appropriate signal name translations noted in Table 11

^{* 1} Supply voltage to CFG_VCCO that is compatible with the FPGA configuration pins.

ds087_08_91001

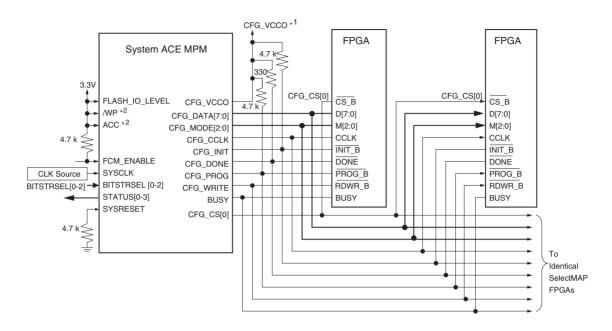
Figure 8: Slave-SelectMAP Configuration Mode

Table 11: Slave-SelectMAP FPGA Configuration Signals

System ACE MPM	FPGA 0	FPGA 1	FPGA 2	FPGA 3
CFG_MODE[0]	M0	M0	M0	M0
CFG_MODE[1]	M1	M1	M1	M1
CFG_MODE[2]	M2	M2	M2	M2
CFG_CCLK	CCLK	CCLK	CCLK	CCLK
CFG_PROG	PROG_B	PROG_B	PROG_B	PROG_B
CFG_INIT	INIT_B	INIT_B	INIT_B	INIT_B
CFG_BUSY	BUSY	BUSY	BUSY	BUSY
CFG_DONE	DONE	DONE	DONE	DONE
CFG_DATA[0-7]	D[0-7]	D[0-7]	D[0-7]	D[0-7]
CFG_WRITE	RDWR_B	RDWR_B	RDWR_B	RDWR_B
CFG_CS[0]	CS_B			
CFG_CS[1]		CS_B		
CFG_CS[2]			CS_B	
CFG_CS[3]				CS_B

^{*2} Combined ACC/WP on XCCACEM32; Separate /WP and ACC on XCCACEM64.

^{* &}lt;sup>3</sup> Use CFG_CS[0] for systems with one slave-SelectMAP FPGA; Use CFG_CS[0-1] for systems with two slave-SelectMAP FPGAs; Use CFG_CS[0-2] for systems with three slave-SelectMAP FPGAs; Use CFG_CS[0-3] for systems with four slave-SelectMAP FPGAs.


Identical configuration of multiple target FPGAs from a single bitstream can be achieved through the appropriate connections. See Figure 9 for an example of two FPGAs that are simultaneously configured from a single bitstream.

The System ACE software assigns bitstreams for the target FPGAs in order, starting from the $\overline{CFG_CS[0]}$ pin through $\overline{CFG_CS[N-1]}$ pin where N is the number of Slave-Select-MAP devices in the system. N may be up to four devices.

The System ACE MPM product family offers data storage capacity up to 64 Mb. See the Flash memory vendor's data

sheets for additional information about the Flash memory

unit in the System ACE MPM. See Table 13 for Flash mem-

- *1 Supply voltage to CFG_VCCO that is compatible with the FPGA configuration pins.
- $_{\star}\,2$ Combined ACC/WP on XCCACEM32; Separate /WP and ACC on XCCACEM64.

ory data sheet references.

DS087_09_091001

Figure 9: Example Slave-SelectMAP Configuration for Identically Configured FPGAs

Configuration Data

The configuration data sets for the target FPGAs are stored in a standard, high-density Flash memory unit in the System ACE MPM.

Data Storage

The System ACE MPM integrates a standard Flash memory unit for storage of the configuration data sets. See Table 12.

Table 12: Flash Memory Storage

System ACE MPM	Flash Device	Flash Density	Flash Speed Grade	Flash Organization
XCCACEM16-BG388I	AMD Am29LV160DT	16 Mb	90 ns	1 M x 16-bit (or 2 M x 8-bit)
XCCACEM32-BG388I	AMD Am29LV320DT	32 Mb	90 ns	2 M x 16-bit (or 4 M x 8-bit)
XCCACEM64-BG388I	AMD Am29LV641DH	64 Mb	90 ns	4 M x 16-bit

Table 13	: Flash Memor	v Data Sheet	References
----------	---------------	--------------	------------

System ACE MPM	Flash Device	Flash Data Sheet
XCCACEM16-BG388I	AMD Am29LV160DT	http://www.amd.com/products/nvd/techdocs/22358.pdf
XCCACEM32-BG388I	AMD Am29LV320DT	http://www.amd.com/products/nvd/techdocs/23579.pdf
XCCACEM64-BG388I	AMD Am29LV641DH	http://www.amd.com/products/nvd/techdocs/22366.pdf

Data Set Organization

The Flash memory data array begins with a data set directory. There are eight directory entries that correspond to the binary value of the BITSTRSEL[2-0] setting. Each directory entry is 16 bytes long. The main elements in a directory entry are: the configuration processing options for the data set, the starting address of the actual data set location, and the length of the data set in bytes. See Figure 10 for details of the System ACE MPM directory structure.

The System ACE software composes the entire Flash memory image and automatically calculates the directory information from the given data streams and user selected options.

Configuration Data Compression

The System ACE software gives the option to compress the data streams up to 50 percent. The System ACE data stream is stored in the compressed format within the System ACE MPM. The System ACE MPM decompresses the data streams in real time delivery to the target FPGAs.

The compression performance is data-dependent. Encrypted Virtex-II bitstreams are not compressible.

Configuration Data Security

Data security is available for Virtex-II bitstreams through the standard Virtex-II encryption technology.

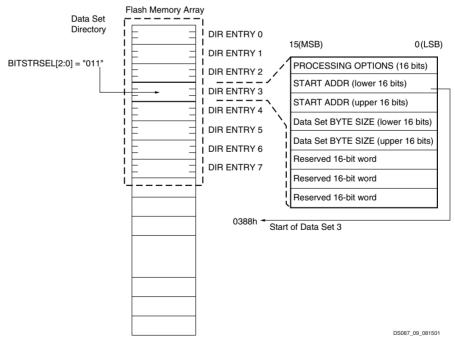


Figure 10: Flash Memory Organization

Configuration Sequence

The System ACE MPM configuration sequence is automatically initiated at power-up for the initial system configuration and can be triggered later during system operation using the SYSRESET signal to reconfigure the system. The configuration sequence is as follows:

- Sample BITSTRSEL[2:0] pins to determine the data set to download.
- 2. Pulse the CFG_PROGRAM pin to clear the target FPGAs and prepare them for configuration.
- 3. Wait for the CFG_INIT pin to go High which indicates the target FPGAs are ready to receive data.

- 4. Find the data set from the data set directory structure in the Flash memory.
- Deliver the data set to the target FPGAs according to the configuration and processing options specified in the directory.
- Check for DONE to go High indicating a successful configuration.

Configuration Control Timing

Table 14 shows the configuration control timing details.

Table 14: Control Configuration Timing

Symbol	Description	Min	Max	Units
T _{SYSRESET}	SYSRESET min pulse	10		SYSCLK cycles
T _{SSEL}	BITSTRSEL[2:0] setup time to SYSCLK	1.1		ns
T _{HSEL}	BITSTRSEL[2:0] hold time from SYSCLK	0		ns

Configuration Data Set Selection

The System ACE MPM provides the opportunity to store up to eight separate configuration data sets for the target FPGAs in the system. The System ACE MPM BITSTR-SEL[0-2] pins determine which of the eight possible data sets to download. A data set is downloaded to configure the target FPGAs automatically at system power-up, or a data set is downloaded to reconfigure the target FPGAs upon activation of the System ACE MPM SYSRESET pin. See Table 15.

At the beginning of a configuration sequence (initiated at power-up or via the SYSRESET pin), the System ACE MPM samples the BITSTRSEL[2-0] pins to determine the data set to download. Then, the System ACE MPM downloads the data set to all target FPGAs.

Table 15: Configuration Data Set Selection for BITSTRSEL[2:0] Settings

В	BITSTRSEL[2:0]		
[2]	[1]	[0]	Set
0	0	0	Data Set 0
0	0	1	Data Set 1
0	1	0	Data Set 2
0	1	1	Data Set 3
1	0	0	Data Set 4
1	0	1	Data Set 5
1	1	0	Data Set 6
1	1	1	Data Set 7

The System ACE MPM can be hardwired for power-up configuration. Or, as shown in the example in Figure 11, the System ACE MPM can be actively controlled and monitored by the microcontroller.

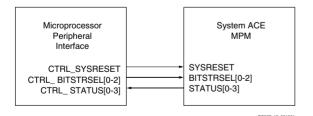


Figure 11: Example Microprocessor-Based Data Set Selection, Configuration Control, and Configuration Status Monitor

Configuration Status

The System ACE MPM reports status through four status pins (STATUS[3-0]). The status of the System ACE MPM is available at all times. See Table 16 for definitions of the status signals.

Table 16: Status Definitions

STATUS [3]	STATUS [2]	STATUS [1]	STATUS [0]	Status Definition
0	0	0	0	Reset OK; system ready
0	0	0	1	Successful Slave-Serial or Slave- SelectMAP configuration
0	0	1	0	Configuration error (CFG_DONE did not go High)
0	0	1	1	Decompress- ion error
0	1	0	0	Invalid controller state (internal error)
0	1	0	1	Invalid configuration data or blank flash memory
0	1	1	х	Reserved
1	x	x	x	MPM in wait state;. JTAG Flash commands (erase, blank-check, program, verify) can be issued.

Table 17 provides the corrective action for status errors.

Table 17: Corrective Action for Status Errors

Status Error	Corrective Action
Configuration Error (CFG_DONE did not go High)	Check that all target FPGA DONE pins are connected to CFG_DONE with external 330- Ω pull-up resistor.
Decompression Error	Perform SYSRESET sequence to re-initialize the System ACE MPM controller and restart configuration.
Invalid Controller State	Perform SYSRESET sequence to re-initialize the System ACE MPM controller and restart configuration
Invalid Configuration Data or Blank Flash Memory	Erase and reprogram the Flash memory. Perform SYSRESET sequence to re-initialize the System ACE MPM controller and restart configuration.

Programming the Flash Memory

The System ACE MPM provides two interfaces for accessing the internal Flash memory unit: the native Flash memory interface and the Boundary Scan port. The native Flash memory interface provides direct access to the Flash memory pins for reading and writing. The Boundary Scan port provides indirect access to the Flash memory pins via the Boundary Scan logic in the System ACE MPM controller (XCV50E), whose Boundary Scannable pins are connected to the Flash memory pins. See Table 18. Drive FCM_ENABLE Low before using the native Flash memory interface.

System ACE Software

The System ACE software provides direct programming support via the Xilinx Parallel Cable III to the System ACE MPM Boundary Scan port. The System ACE software takes advantage of a Flash memory programming engine that is integrated into the System ACE MPM controller's Boundary Scan logic.

Table 18: Typical Flash Memory Programming Methods

Programming Method/Tool	Interface	Unit Location	Phase(s)
System ACE software	Boundary Scan	In-system	Prototype development debug
Boundary Scan tools	Boundary Scan	In-system	Development test production
Automatic Test Equipment	Native Flash Interface	In-system	Test production

Table 18: Typical Flash Memory Programming Methods (Continued)

			ı
Programming Method/Tool	Interface	Unit Location	Phase(s)
Third-party programmers	Native Flash Interface	Off-board	Pre- production
Microprocessor	Boundary Scan or Native Flash Interface	In-system	Remote Upgrade

Boundary Scan Tools

The System ACE software can generate serial vector format (SVF) files for System ACE MPM operations. These SVF files can be executed through a Boundary Scan test tool.

Automatic Test Equipment

Automatic test equipment (ATE) vendors support in-system Flash memory programming. The System ACE MPM's native Flash interface provides virtual access to every pin of the Flash memory for the ATE. During the programming operation, the ATE must hold the FCM_ENABLE signal on the System ACE MPM Low to ensure that there will no contention between the ATE and the System ACE MPM controller on the native Flash interface signals. Test access points are required for all of the native Flash memory interface signals and for the System ACE MPM FCM_ENABLE signal.

Third-Party Programmers

Third-party programmer vendors support stand-alone programming of the System ACE MPM through the native Flash memory interface. The System ACE MPM programming times should be equivalent to the programming times for the stand-alone AMD Flash memory units.

Embedded Microprocessor

An embedded microprocessor can be used to remotely upgrade the System ACE MPM data sets. The embedded microprocessor can program the Flash memory in the System ACE MPM using the native Flash memory interface to directly control the Flash memory or the four-wire Boundary Scan port.

The native Flash memory interface provides direct read access, as well as write access, to the Flash memory. See the AMD Flash memory data sheet for the proper Flash memory programming protocol.

The FCM_ENABLE signal on the System ACE MPM must be held Low during external access to the Flash memory. Otherwise, contention between the microprocessor and System ACE MPM configuration controller can occur.

The System ACE software can generate an SVF file for programming a System ACE MPM Flash memory through the System ACE MPM Boundary Scan interface. The Xilinx application note (XAPP058) at:

(http://www.xilinx.com/xapp/xapp058.pdf)

provides reference C code and solutions for programming a device through Boundary Scan from an SVF file.

Software Support

The standard Xilinx design flow is followed for the development of the FPGA design sets. The Xilinx design software packages are used to develop the design from which .bit configuration file(s) are generated for each target FPGA. The Xilinx PROM File Formatter tool is then used to compile the .bit file(s) into a single image for downloading to a Slave-Serial chain of FPGAs or to a single SelectMAP FPGA. The output from the Xilinx PROM File Formatter is an .MCS PROM image. The set of .MCS PROM images that configure all of the target FPGA(s) connected to the System ACE MPM is a called a design set.

The System ACE MPM can store up to eight data sets. The System ACE software is used to compile multiple data sets into a single Flash memory image. The Flash memory image is stored as an **.MPM** file. The **.MPM** file is a standard Intel Hex (.MCS) file. The assignment of each data set to a target FPGA chain or SelectMAP device is defined within the System ACE software.

The System ACE software can also program the final Flash memory image into the System ACE MPM through a Xilinx Parallel Cable III, or it can generate an SVF file for programming the System ACE MPM using an alternate, Boundary Scan-based programming method. Details of the System ACE software are described in the System ACE CF Technology Software User Guide. Figure 12 shows the System ACE MPM software flow.

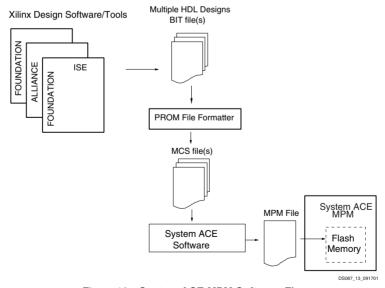
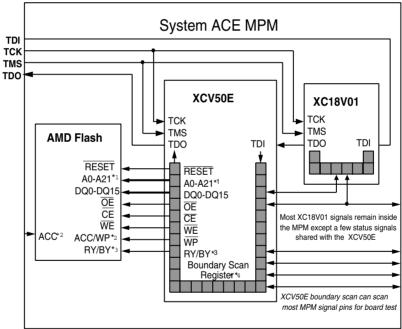


Figure 12: System ACE MPM Software Flow

IEEE 1149.1 Boundary Scan


The Xilinx Virtex-E XCV50E and XC18V01 PROMs in the System ACE MPM support IEEE 1149.1 Boundary Scan. Although the AMD Flash memory does not support Boundary Scan, all signal pins on the AMD Flash memory and the MPM BG388 package are connected to boundary scannable pins on the XCV50E device (with the exception of the XCCACEM64's ACC pin). Thus, the System ACE MPM supports Boundary Scan for all significant signals on the System ACE MPM via the XCV50E's Boundary Scan register. Although the XC18V01 supports a Boundary Scan register, most of its signals are solely internal to the System ACE MPM. Signals from the XC18V01 device that reach the external BG388 sites are redundantly tied to the XCV50E device. Thus, Boundary Scan can be effectively performed solely with the XCV50E Boundary Scan functions. See Figure 13.

Boundary Scan Test Requirements

The System ACE MPM FCMRESET signal drives the XCV50E /PROGRAM pin. The active-Low PROGRAM pin on the XCV50E device resets the XCV50E's Boundary Scan test access port (TAP) controller. The FCM_ENABLE signal must not be driven Low during Boundary Scan test.

Boundary Scan test functionality is undefined during the System ACE MPM initialization phase. Therefore, boundary scan testing must wait until after the initialization phase is complete.

A special System ACE MPM Boundary Scan description language (BSDL) file is required for proper Boundary Scan test operation with the Virtex-E XCV50E device. The XCCACEM16_BG388.BSD, XCCACEM32_BG388.BSD, and XCCACEM64.BSD files are available from the Xilinx BSDL website under the software support pages at: http://www.support.xilinx.com

^{*1} A21 for XCCACEM64 only; A20 for XCCACEM32 and XCCACEM64 only.

ds087_14_091701

Figure 13: System ACE MPM Boundary Scan Mode

^{*2} ACC/WP on XCCACEM32; XCCACEM64 has separate WP and ACC pins.

^{*3}RY/BY for XCCACEM16 and XCCACE32 only.

^{*4} Boundary scan register is only conceptually depicted.
See the System ACE MPM BSDL file for accurate boundary-scan register information.

TAP Timing

See Figure 14 for Boundary Scan TAP timing requirements.

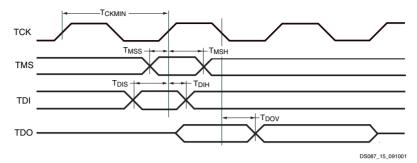


Figure 14: Boundary Scan TAP Timing Diagram

TAP AC Parameters

Table 19 provides Boundary Scan TAP AC characteristics.

Table 19: Boundary Scan TAP AC Characteristics

Symbol	Parameter	Min	Max	Units
T _{CKMIN1}	TCK minimum clock period	100	-	ns
T _{CKMIN2}	TCK minimum clock period, Bypass Mode	50	-	ns
T _{MSS}	TMS setup time	10	-	ns
T _{MSH}	TMS hold time	25	-	ns
T _{DIS}	TDI setup time	10	-	ns
T _{DIH}	T _{DIH} TDI hold time		-	ns
T _{DOV}	TDO valid delay	-	11	ns

Absolute Maximum Ratings

Table 20 provides absolute maximum ratings.

Table 20: Absolute Maximum Ratings

Symbol	Description	Min	Max	Units
VCCint1	1.8V supply voltage relative to GND	-0.5	2.0	V
VCCint2	3.3V supply voltage relative to GND	-0.5	4.0	V
FLASH_VCCO	Flash interface power supply	-0.5	4.0	V
CFG_VCCO	Configuration interface power supply	-0.5	4.0	V
CTRL_VCCO	System interface power supply	-0.5	4.0	V
V _{IN}	Input voltage with respect to GND	-0.5	4.0	V
V _{TS}	Voltage applied to 3-state output.	-0.5	4.0	V
VCCint1_r	Longest 1.8V supply voltage rise time 0 V – 1.71 V		50	ms
T _{STG}	Storage temperature (ambient)	-40	125	°C

Recommended Operating Conditions

Table 21 provides the recommended operating conditions.

Table 21: Recommended Operating Conditions

Symbol	Description	Min	Max	Unit
VCCint1	1.8V supply voltage relative to GND	1.8 - 5%	1.8 +5%	V
VCCint2	3.3.V supply voltage relative to GND	3.0	3.6	V

Quality and Reliability Characteristics

DC Characteristics Over Operating Conditions

Table 22 provides DC characteristics over operating conditions.

Table 22: DC Characteristics Over Operating Conditions

Symbol	Description	Min	Max	Unit
V _{DRINT1}	Data retention VCCint1 voltage	1.5		V
I _{CCINT1Q}	Quiescent V _{CCINT1} supply current		200	mA
I _{CCINT2Q}	Quiescent V _{CCINT2} supply current		40	mA
IL	Input leakage current	-11	+11	μА
C _{IN}	Input capacitance		10	pF
C _{OUT}	Output capacitance		10	pF

DC Input and Output Levels Over Operating Conditions

Three of the primary interfaces (the Boundary Scan interface, the system control interface, and the target FPGA interface) to the System ACE MPM have I/O level compatibility control pins. See Figure 2 and Figure 4. FLASH_VCCO controls the internal Flash memory interface and the Boundary Scan interface. FLASH_VCCO must be connected to a 3.3V power supply. The Boundary Scan ports (TCK, TMS, TDI, and TDO) and the internal Flash

memory interface pins follow the 3.3V input and output level specification. CTRL_VCCO controls the system control interface, and CFG_VCCO controls the target FPGA interface. The input and output level specifications for the system control and target FPGA interface pins depend on the voltage connection to the CTRL_VCCO and CFG_VCCO pins. See Table 23 for the input and output level specifications for each VCCO voltage level.

Table 23: DC Input and Output Levels Over Operating Conditions

VCCO Voltage Level	V _{IL} , Min	V _{IL} , Max	V _{IH} , Min	V _{IH} , Max	V _{OL} , Max	V _{OH} , Min	I _{OL} , Max	l _{OH} , Min
3.3 V	-0.5 V	0.8 V	2.0 V	3.6 V	0.4 V	2.4 V	24 mA	-24 mA
2.5 V	-0.5 V	0.7V	1.7 V	2.7 V	0.4 V	1.9 V	12 mA	-12 mA
1.8 V	-0.5 V	35% VCCO	65% VCCO	1.95 V	0.4V	VCCO - 0.4 V	8 mA	-8 mA

AC Characteristics Over Operating Conditions

Table 24 provides the AC characteristics over operating conditions.

Table 24: AC Characteristics Over Operating Conditions

Timing Parameter	Description	Min	Max	Unit
F _{SYS}	Maximum SYSCLK frequency		133	MHz
T _{SCL}	SYSCLK Low time 3.75			ns
T _{SCH}	SYSCLK High time	3.75		ns
T _{SYSRESET}	Minimum SYSRESET pulse time	10		SYSCLK cycles
T _{CYC}	CFG_CCLK period		66.5	MHz
T _{LC}	CFG_CCLK Low time	7.5		ns
T _{HC}	CFG_CCLK High time	7.5		ns

Quality and Reliability Characteristics

Table 25 provides quality and reliability characteristics.

Table 25: Quality and Reliability Characteristics

Symbol	Description	Min	Max	Unit
T _{DR}	Data retention	20 (Note 1)		Years
N _{PE}	Program/erase cycles	1 million (Note 1)		Cycles
V _{ESD}	Electrostatic discharge (HBM)		1500	Volts

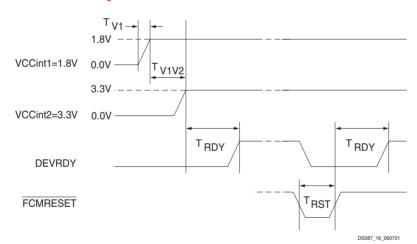
Notes:

1. See AMD Flash memory data sheet.

System ACE MPM Power-On Power Supply Requirements

The System ACE MPM requires two supply voltages: 1.8V and 3.3V. The 1.8V supplies power to the embedded XCV50E configuration controller core. The 3.3V supplies power to remaining XCV50E power pins and to all other devices. The 3.3V supply must be applied after or simultaneous to the 1.8V supply. The embedded XCV50E and XC18V01 require monotonic power supply ramps. The XCV50E requires the 1.8V supply to ramp to nominal voltage in less than 50 milliseconds. See Figure 15.

Before any programming operations can be performed, the programmer must wait for the XCV50E's initialization phase to complete. The programmer may wait for either the maximum initialization time or for the System ACE MPM DEVRDY signal to go High which indicates the end of the initialization phase. After the initialization phase is complete, the device is ready for operation. See Table 26 for power-on power supply requirements.



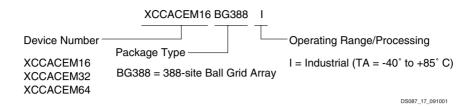

Figure 15: Power-On Power Supply Requirements

Table 26: Power-On Power Supply Requirements

Parameter	Description	Minimum	Maximum
T _{V1}	1.8V power supply ramp 0-1.8 V	2 ms	50 ms
T _{V1V2}	1.8V to 3.3V power sequence delay	0 ms	
T _{RDY}	Initialization time after 3.3V or FCMRESET		250 ms
T _{RST}	System ACE MPM controller reset	300 ns	
I _{1.8 V}	1.8V supply current	2 A	

Ordering Information

Valid Ordering Combinations

Valid Ordering Combinations	Description
XCCACEM16BG388I	16 Mb System ACE MPM
XCCACEM32BG388I	32 Mb System ACE MPM
XCCACEM64BG388I	64 Mb System ACE MPM

Revision History

The following table shows the revision history for this document.

Date	Version	Revision
09/25/01	1.0	Initial Xilinx release.
01/18/02	1.1	Minor edits done.
06/07/02	1.2	Added "Virtex Series FPGAs" and "Virtex-II Series Platform FPGAs" to the Summary.