INTRODUCTION

The PF474 microcircuit is a totally new device

which implements the revolutionary String Prox- A R 1] rro| mn
imity Computer and Ranker on a single VLSI sili- A, e

con chip using high-speed NMOS technology. = — 5%
The String Proximity Computer (United States Aj[: — 5

and foreign patents pending) is a state—of-the-art

device that compares two symbol strings to 5 —_
arrive at a numeric rating of their similarity; a As 5 I~
32-bit binary fraction ranging between zero and Ao L3 [~
one. This highly sophisticated measure of similar- A, & [ne
ity is very flexible and adaptable to a wide spec- Ag [] RESET
trum of applications. It is useful to think of the rq PF474 1r/W
PF474 as a scoring device that produces high Ao ke
scores for very similar strings and low scores for Ay,] ne
highly dissimilar strings. Typically, the PF474 is Ay, o,
used to search a list of symbol strings (a data- A o,
base for example) for entries that are most simi-
. . g , Ay an| D,
far to a query which is fixed for the duration of N o
the operation. When the operation is complete, — }
. . WA] ™o,
the ranker portion of the device can be accessed -
to identify which members of the list received v 305
the highest scores. ax 10,
ono []l20 21| o,

FEATURES

® Computes 32-bit Proximity Values @ High-speed DMA facility permits rapid load-

@ Processes strings with lengths of up to 127 ing from external memory: up to 2 million
8-bit symbols bytes per second

® Maximum throughput of 66,110 comparisons ®Smart DMA permits optional editing of the
and rankings per second for strings of 8 char- input data to offload certain useful prepro-
acters (PF474-40) cessing tasks from the host processor

® Parameter tables, stored in externally accessi- @ Fits naturally and simply into microprocessor
ble RAM, allow tailoring of the Proximity based systems
Function

@ LS TTL compatible
®Maintains internal 16—element ranked list of

best matches ® Range of clock speeds:

2.5 MHz for PF474-25
® Permits location of 15 additional next best 3.0 MHz for PF474-30
matches 3.6 MHz for PF474-36

. . 4.0 MHz for PF474-40
@ Modern programming architecture allows the

device to be accessed as normal memory ® High—reliability 40-pin ceramic DIP package

@Single +5 volt supply

Doc. TEBT1138 Rev. 4.1 1/84 Page 1

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

The Challenge: Finding Approximately Matching Strings

The retrieval of information based on inexact, incomplete or inaccurate data has been a difficult prob-
lem for computers to cope with. Many tasks such as looking up a name, correcting spelling errors or
searching a natural language database, demand that the computer be able to perform pattern matching
on strings, that is, to be able to recognize and retrieve strings which are similar to or approximately
equal to a query string.

In the past, systems which have attacked this kind of problem in real time have typically used special
purpose algorithms which are limited in their capabilities. Most schemes for the automatic correction of
spelling errors require that the misspelling be incorrect by no more than three deletions, insertions and
substitutions of letters. These systems are software implementations which are constrained by the
requirement to rapidly locate a few words within a database of many tens of thousands of words.

Generally, such a system can be conceptually broken down into two parts: first, a method of limiting
the search space to a small number of strings and, second, a string matching function which identifies
the most similar records in the restricted search space. The search space is restricted because the
string matching algorithms have only been able to make up to a few thousand comparisons per second.
Unfortunately, restricting the search space may reduce the effectiveness of the system by decreasing
the robustness of the search. Hence, the system may work fine with differences of up to a certain
degree, but beyond that, the system may totally fail. For instance, the above described spelling correc-
tion system would be completely unable to recognize youthinasia as being similar to euthanasia, or
shartroose as close to chartreuse.

The Solution: The PF474 Microcircuit

Now, there is a general purpose solution to the problem of approximate string matching: a powerful
string comparison computer which operates at extremely high speeds. The PF474, a VLSI integrated cir-
cuit developed by Proximity Technology Inc., computes a powerful string comparison function at the
high speed of 20,000 to 30,000 comparisons per second and faster. Thus many search problems may
be solved by exhaustive brute force methods within an acceptable amount of time.

The Proximity Function, as implemented in the PF474, is very flexible and highly adaptable to specific
problems. This is important, for example, because an optimal comparison method for correcting the
spelling of English words will not work quite as well for comparing proper names, French words, and so
forth.

in most applications, one string is chosen as a search string or query string. This query string is com-
pared with each string in a large database by the PF474, which computes a Proximity Value for each of
the database strings. The highest Proximity Values (corresponding to the best matches) are stored in a
ranked list in the PF474 for reference at the end of the search.

The Proximity Function is unique among string matching algorithms in that it can be computed quickly in
hardware. Furthermore, the comparison time is /inear with the number of characters in the strings.
Thus, for strings of length 8, the comparison rate is 66,110 comparisons per second, and for strings of
length 127, the comparison rate is 5,164 per second. (These speed figures assume a system providing
strings to a 4 MHz PF474 at its full input rate.) This is quite remarkable since other similar functions gen-
erally require a computation time proportional to the square of the length of the strings. A full
mathematical description of the actual algorithm can be found in appendix A.

Doc. TEB1738 Rev. 4.7 1/84 Page 2

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

1.2 PF474 ARCHITECTURAL OVERVIEW

The overall architecture and data flow of the PF474 is shown in the diagram below.

PFA474 INTERNAL DATA BUS

CONTROL
AND STATUS
REGISTER

STRING
SCRATCH
M MEMORY
DM A >
CONTROL
STRING B
\.\ :
NS
EXTERNAL _ \
— —)
SYSTEM F[Rmmmm comm |
BUS — 4
7/
= 4

PARAMETER
TABLES ,

RANKER

RANKER LIST
STATUS AND
CONTROL

Figure 1. Architectural Blocks

Doc. TE81738 Rev. 4.7 1/84 Page 3

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

System access to the PF474 is through the External System Bus. The four memory regions that are exter-
nally accessible are the Control and Status Registers, Strings A and B, the Parameter Table, and the
Ranker Control and its Status Registers and Ranked List. The string memories are loaded directly under
CPU control, or by Direct Memory Access data transfer under control of the DMA controller. When
the proper commands are written to the Command Register, the Proximity Computer performs a string
comparison operation on the two strings in String A and B. During the calculations, the Scratch Memory
is used for intermediate results, and the Parameter Table is consulted. The results of the Proximity Com-
putation are then sent to the Ranker. The Status Register now indicates that the Proximity Computer is
ready to start another computation, but that the Ranker is still busy. The Ranker updates the Ranked List
with the result of the latest comparison. The size of the Ranked List and other details of the Ranker’s
operation are controlled by the Ranker Control Registers.

The three computational subsystems — DMA Controller, Proximity Computer, and Ranker — merit further
discussion.

1.2.1 DMA Capabilities

The DMA (Direct Memory Access) Controller of the PF474 supports high-speed data loading in DMA
mode. This computational subsystem of the PF474 controls the source, destination, and mode of edit-
ing for high-performance DMA input to the PF474.

To initiate DMA mode, software writes a starting address into a register inside the PF474. The PF474
then requests control of the system bus and reads system memory sequentially until the NULL character
is encountered. This terminates DMA mode and optionaily causes a comparison operation. DMA loads
strings at up to two characters per microsecond, and is an important factor in obtaining good system
throughput. Without DMA, each string would have to be moved character by character under
microprocessor control which would take much longer than the actual Proximity Computation. How-
ever, strings can be written directly without using DMA, if desired.

A further advantage of DMA is DMA editing: certain characters are recognized as state indicators, and
special state transition characters are optionally generated. DMA also deletes F/LL (01,,) characters.
DMA Editing is fully explained in the Advanced Topics chapter. Many applications can use DMA edit-
ing to reduce the database size and hence increase throughput.

1.2.2 The Proximity Computer

The second subsystem, the String Proximity Computer, hereafter referred to as the Proximity Com-
puter, is the heart of the PF474. Here, a string comparison algorithm computes the Proximity Function,
indicating the degree of similarity of two strings stored in the String Memories. Character Parameters
control the precise manner in which the degree of similarity is computed. The resulting Proximity Value
is a 32-bit binary fraction ranging from zero to one. A Proximity Value of 1 indicates that two words
are fully equivalent while a 0 Proximity Value indicates that two strings are completely different (no
characters in common, compensation for all characters equal to zero). Values between zero and one
denote a uniform range of similarity. The Proximity Function is mathematically elegant, yet its measure
of similarity agrees very well with human intuition: the function sees the same similarities that people
do. These properties make the PF474 a very exciting programming tool.

The utility of the PF474 is enhanced by user-variable parameters and the capability to handle long
strings of up to 127 8-bit characters. The Proximity Function allows the user to set weight, compensa-
tion and bias parameters individually for each of the 255 possible characters. These parameters control
the importance of each character and allow other customizations of the Proximity Function as described
later in this manual. The ability to set parameters allows the PF474 to calculate different values for dif-
ferent applications, making the Proximity Function useful for a wide variety of tasks.

Doc. TE81138 Rev. 4.1 1/84 Page 4

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

1.2.3 The Ranker Subsystem

The third computational subsystem is the Ranker. The Ranker takes the results of the Proximity Com-
puter and saves the best matches in the Ranked List memory. After doing many successive comparis-
ons, the Ranked List contains information about the comparisons yielding the highest degrees of similar-
ity.

In some cases it may be necessary to retrieve more than the best 16 matches. The Ranker can be used
to get the next best 15 matches (and then the next 15, and so on) by setting the Next Best flag, initializ-
ing the Ranked List, and re—scanning the entire database.

The Ranker saves the Proximity Value and a four byte Internal Record Number (IRN) for each of the up
to 16 best (or next best 15) comparisons. The IRN is initialized by the user and automatically incre-
mented by the Ranker subsystem after each comparison, thus generating a unique IRN for each record.

The Proximity Computer and the Ranker operate in a pipelined fashion. This means that the Proximity
Computer can begin a new Proximity Computation while the Ranker is still ranking the previous Proxim-
ity Value. The Ranker works concurrently with the computation of the Proximity Function and thus
does not slow down the computational throughput significantly. For most comparisons, the overall
throughput of the Ranker is higher than that of the Proximity Computer so that the Proximity Computer
will rarely wait for the Ranker. The pipelined structure of the Proximity Computer and Ranker is an
important part of the speed advantage gained by using the PF474. Very little extra time is spent in per-
forming ranking. If the ranking were performed by software, the ranking time would be much greater
than the computation time!

Doc. TE81138 Rev. 4.7 1/84 Page 5

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

1.3 APPLICATIONS

Most data from human input, or physical processes comes in an inexact form, which then must be inter-
preted. The PF474 was designed to assist in solving these non-numeric tasks. In contrast to older
methods, the Proximity Function offers a measure of similarity between strings that is both fast and
meaningful. Following are some of the more interesting or unusual application of the PF474,

®When the search space is a small to medium sized list (up to about 1000 items), the PF474 is fast
enough to provide the appearance of instantaneous response. A PF474 could be used to increase
the friendliness of an operating system by instantly finding the intended command (or filename, etc.)
from an incomplete or misspelled one.

®The medical and legal professions rely heavily on decisions based on a accumulations of previous
experiences, and a quick interactive method for searching case histories would be very useful.

®A DBMS with a PF474 would allow a user to work with the computer to find a record instead of
operating in an inquire, wait, and try again mode. The user would fill in any of the fields that he
knew, and the PF474 would use those fields to find the closest matches. All the fields would not
have to be filled in: the desired record will probably show up in the top 16 before most of the fields
are filled in.

® Large databases could be searched by having the PF474 (or multiple PF474s) directly read data as it
comes off a disk. PF474s could be placed on memory boards with a controller, to provide a search
capability with no processor overhead.

®For very large databases, partitioning/clustering techniques could be used to create a fuzzy ISAM
file structure. The index blocks would be of very high valence, and the PF474 would search these
blocks.

® A natural application for the PF474 is in the area of speech recognition. The PF474’s string length of
127 characters allows for a rather detailed representation of an utterance’s phonetic structure. The
PF474 would then compare the utterance against a list of templates. With an appropriate method for
representing phonetic structures, a medium vocabulary speaker-independent recognition system
could easily be buiit.

® Handwriting analysis and recognition is another application suited for the PF474. The various
features of a sample of handwriting would be built into a string which would be then compared
against a library of templates.

This list is certainly incomplete, especially since the PF474 implements a completely new function, and
is not simply a hardware version of existing software. There will be applications that were previously
impossible, not simply slow or impractical.

The following list has some general hints and suggestions for PF474 applications.

® Typically, the ordering of the best matches will be of importance, and the actual Proximity Values
will be of little significance, though a large gap in Proximity Value between entries usually indicates a
large difference in similarity.

® Greater throughput can be realized by putting multiple PF474’s into a system. PF474’s can be paral-
leled to use the same query string on different parts of a database, or multiple PF474’s could work
on the same database but with different query strings (or different parameter settings).

® Most applications will have static parameter settings, but since the parameters are in RAM, they may
be dynamically modified. This corresponds to adaptive pattern recognition and will be a part of very
advanced applications.

Doc. TEBT138 Rev. 4.1 7/84 Page 6

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

PROGRAMMING

The PF474 appears to the programmer as a 1024 byte memory region. Not all of these locations are
read/write; a few are write only or read only. Many addressable locations have not been assigned yet
but are reserved for future expansion.

0016
Control Register
OFF 6
10044
Parameter Table
1FFye
2004,
String A
27F‘|6 _________________
28014 | —~————-——— -
String B
2FF ¢
300,
Ranker Control
37Fig | ————mmmmm e e
3801 | ~————————————————
Ranked List
3FF ¢

Major blocks of this address space reflect the different functions the PF474 performs. The Control
region directs the operation of the chip and provides status information to the host CPU. Parameters for
each character in the string alphabet, consisting of weight, bias, and compensation, are stored in the
Parameter region (a 256 byte RAM). These are referenced by the Proximity Computer during its calcula-
tions. The Proximity Function is calculated for the two strings stored in the String region (another 256
byte RAM). The result is compared with a list of previous results, and stored in a ranked list contained
in the Ranker region. The Ranker region also contains additional status and control registers useful in
manipulating this ranked list.

This chapter first describes in detail each of these sections. Then, there are program outlines for some
typical applications. The next chapter describes in detail DMA editing capabilities, precise restrictions
on parameter settings for long strings, software ranking, and throughput calculations.

2.1 THE CONTROL SECTION

The Control section consists of five registers. It occupies addresses 0-FF,q, although only a few
addresses are actually assigned at this time. Any unused location should be considered reserved for
possible future use.

Doc. TEB1738 Rev. 4.1 1/84 Page 7

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

The Status, DMA Options, Command and DMA Registers are accessible during all phases of a Proximity
Computation and Ranking except during DMA. The Clear Position Index Register (CPl) is write—only,
and should be accessed only when the SBSY status bit reads zero, as explained below.

0144 [Status Register I
0244 I DMA Options Register I
044, | Command Register |
08¢

DMA Register
80, I CPOS Register I

2.1.1 The Status Register

The Status Register, a read—only register, contains bits which indicate that the Ranker and/or Proximity
Computer are busy. In order to avoid contention after a computation has been initiated, the Status
Register should be checked before accessing the the PF474. To determine chip status, a program
should read from location 01 .

The Status Register

o1, [Busy | o | o | o | o o | o | sBsy |
7 6 5 4 3 2 1 0

The low order bit SBSY is set when a Proximity Computation is in progress. The Proximity Computation
uses the String Memories and the Symbol Parameter Table; it is not permissible to access these
memories when SBSY is set.

The high order bit BUSY is set when either a Proximity Computation or a Ranking is in progress, indicat-
ing that the Ranker section is in use. When either the Ranker or the Proximity Computer is busy, it is
not permissible to access the Ranked List or the Ranker Control registers.

The unused bits of the Status Register are returned as zero.

The following table summarizes the 3 possible values of this register.

Reglste.r Contents PF474 Status : Accessibility
(Binary) String | Parameter | Ranker
00000000 Idle Yes Yes Yes
10000001 Proximity Com- No No No
puter busy
10000000 Ranker busy Yes Yes No

The significance of the (binary) 10000000 value is that a program may load a new string and initiate a
new Proximity Computation even though the PF474 is still ranking the last one. Thus, performance may
be greatly enhanced by utilizing the pipeline design of the Proximity Computer and Ranker.

Doc. TE81738 Rev. 4.7 1/84 Page 8

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.1.2 The DMA Options Register

The purpose of the DMA Options Register is to specify several parameters for the DMA process. It is a
read/write register with the following layout:

The DMA Options Register

02, | DMGO | seL | encB | enca | DetB | DetA | poee | pora |
7 6 5 4 3 2 1 0

When set, DMGO (DMA & GO), bit 7 of the DMA Options Register, instructs the PF474 to automati-
cally clear the position index before each DMA transfer and invoke a Proximity Computation at the com-
pletion of that DMA transfer. This feature allows a very tight software loop to control the PF474.
When a DMA operation is initiated (See the DMA Registers) while DMGO is set, the following sequence
of events occurs:

®SBSY of the Status Register is checked and, if set, the PF474 waits until it is reset

® The String Position Register is cleared (same as writing to the CPI Register)

@ A DMA operation is performed

® A Proximity Computation/Ranking is initiated (Same as the GO signal to the Command Register)

By using DMGO, a program can ignore the status of the PF474 and just initiate operations as quickly as
it can (assuming DMA operation stops the processor). It is only after the final operation that the pro-
gram needs to check the Status Register.

The SEL bit of the DMA Options Register SELects String A or String B to receive the DMA data. A 0
selects String A, 1 selects String B.

The remaining bits of the DMA Options Register control the editing of special symbols during the DMA
transfer as described in the Advanced Topics section.

2.1.3 The Command Register

The Command Register

o4 [- 1 - T - 1T - 1T - T - 1wt | co |

7 6 5 4 3 2 1 0

The Command Register is used to start a Proximity Computation/Ranking or to cause a software reset.
It is a write—only register. The GO bit is used to start the PF474 in cases where DMGO is not used (see
the DMA Options Register). The RESET bit is used to perform a software reset (same function as
hardware reset pin). Specifying both GO and RESET is a programming error. RESET aborts any compu-
tation in progress and returns the PF474 to an idle state within three clock cycles. Note that this will
scramble the Ranked List until the next Proximity Computation is performed. In many applications the
Command Register may be totally unused since the PF474 may be reset at power—on time and the
DMGO bit may be set in the DMA Options Register.

Doc. TE871738 Rev. 4.1 1/84 Page 9

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.1.4 The DMA Register

The DMA Register

08¢ A7 A6 AS A4 A3 A2 A1l A0
09+ A15 A4 A13 Al12 Al1 A10 A9 A8
7 6 5 4 3 2 1 0

The DMA Register occupies locations 8 and 9 and holds a 16 bit address. The PF474 internally main-
tains a write access flag for each of these two bytes. When both flags are set, indicating that the pro-
gram has completed writing both bytes of the address, DMA is automatically invoked. After a DMA
operation, this register contains the address immediately following the NULL which terminated DMA,
and the internal flags are reset.

During a DMA operation, a transfer of data takes place, with the length determined entirely by the posi-
tion of the NULL character. It is an error to perform DMA such that the string, minus FILL characters,
plus generated transition characters (see DMA Editing), minus deleted state characters (see DMA Edit-
ing), plus terminating NULL, is longer than 128 characters.

2.1.5 The CPI Register

The CPI Register

so | - | - | - | - | - | -] -] car |

7 6 5 4 3 2 1 0

The PF474 contains an internal register called POS which is used during DMA as a position index. Writ-
ing a one (actually anything) to CPI (Clear Position Index) zeros the POS Register. The CPl Register
need not be accessed if the DMGO option of the DMA Options Register is used. To illustrate its use,
suppose that the string pic is stored in external memory at address 100,¢ and the string tur is stored at
200,4, and the string es is stored at 300,,. Then the following register operations would be needed to
load the string pictures into PF474 String Memory:

® Wait until SBSY in the Status Register is zero
® Write 1 to CPI

® Write 100, to the DMA Register

® Write 200, to the DMA Register

® Write 300, to the DMA Register

Note that the CPI Register must not be written to if SBSY is set. CPl is a write-only register.

Doc. TE81138 Rev. 4.7 7/84 Page 10

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.2 THE PARAMETER SECTION

The Parameter section is a 256 byte memory region which contains one byte for each possible charac-
ter describing the attributes of that character. These attributes are: weight, bias and compensation.

The weight of a character is a direct measure of the importance or significance of a character. A char-
acter with weight 6 is twice as important as a character of weight 3 (which is three times as important
as a character of weight 1) in determining the similarity of two strings. The weight of a character varies
between 0 and 7 inclusive. A character of weight 0 is almost ignored, but does affect similarity by tak-
ing up a position in the string.

The bias of a character can be set from -2 to +1. A negative bias means that a character is more
important near the beginning of a word than near the end of the word. A positive bias means the oppo-
site. Thus, if all characters are uniformly biased negatively, the Proximity Computation will attach more
importance to words being similar near the beginning and less importance to similarity near the end of
the words.

The compensation of a character can be set from a low of 0 to a high of 7. Compensation distin-
guishes two different kinds of dissimilarity between characters: two words may differ by having a given
character in one word but not the other, or by having a character in a different position. The compensa-
tion value of unmatched characters (but not characters that are just in the wrong position) is added in
during the Proximity Computation. High compensation (relative to weight) makes the Proximity Function
more tolerant of dropped or missing characters.

The Parameter section occupies addresses 100;,—~1FF;4 and consists of 256 Symbo/ Parameters. Each
Symbol Parameter controls the manner in which the PF474 processes a particular symbol. For example,
the thirtieth Symbol Parameter has address 100+ 1E,,=11E;, and affects processing of the symbol
having decimal value 30 (1E;¢). Thus it is possible to individually specify processing parameters for
each symbol used in a given application. The NULL symbol also has a Parameter byte assigned to it, but
the NULL is not a valid character. It is only a string terminator.

The contents of Parameter Memory are not predictable at power up time and therefore should be initial-
ized before the PF474 is used. However, there is no need to load Symbol Parameters corresponding to
symbols that are not used in a given application. Asserting PF474 Reset has no effect on Parameter
Memory.

There are restrictions on setting the Symbol Parameters that are explained later. Violation of these res-
trictions may result in an undetected erroneous value from the Proximity Computation. Therefore, it is
the programmer’s responsibility to ensure that Symbol Parameters are in the correct range.

Each Symbol Parameter is divided into three separate bit—fields as shown below:

Symbol Parameter Layout

I Compensation l Bias I Weight
7 6 5 4 3 2 1 0

Doc. TE817138 Rev. 4.1 1/84 Page 117

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.2.1 Weight

Weight is a three bit unsigned binary field used to adjust the weight (intuitiveness, importance) of a sym-
bol. Weight can have 8 possible values encoded with bit 0 being the least significant bit.

Seven (binary 1 1 1) is the maximum weight while a weight of zero (0 0 0) causes the PF474 to virtually
ignore the symbol. However, even weight zero symbols occupy space in a string and therefore affect
to some extent the Proximity Computation.

2.2.2 Bias

Bias is a two bit signed two’s complement binary field that may be used to adjust the positional sensi-
tivity of the Proximity Computation both for matching and for non—corresponding symbols. Negative
bias values increase sensitivity towards the beginning of the string, reducing linearly with position. Posi-
tive bias values increase sensitivity towards the end of the string, increasing linearly with position. A
bias of zero is the neutral setting.

There is a simple restriction on the setting of bias: the sum of bias and weight must fall in the range 0-
7. For example, if bias is set to -1, the range of legal weights is 1-7. If the bias is 1, the range of legal
weights is 0-6.

Bit—4 Bit—3 Bias
1 0 -2
1 1 -1
0 0 0
0 1 1

2.2.3 Compensation

Compensation is a three bit unsigned binary field, with bit 5 being the least significant bit, that is used
to adjust overall sensitivity of the PF474 to non-corresponding symbols. When set to zero the PF474 is
least tolerant of non—corresponding symbols. In this case the result of comparing 2 with b would be
zero. Raising compensation relative to weight increases tolerance of missing characters. The extreme
case occurs when compensation is equal to weight. For example, if this extreme case occurs for sym-
bols ‘a’ as well as 'b’ then the result of comparing a with b would be unity! It is useful to view compen-
sation in the following general way: with compensation set to zero, the Proximity Function is more sensi-
tive to missing characters than to errors in positioning; raising compensation/weight ratios gives more
importance to position by decreasing the sensitivity to missing characters. This is best illustrated by an
example. Consider the two cases of:

aligned compared to alined
and
aligned compared to alinedg

If g has a low compensation/weight ratio, the second comparison will yield a higher degree of similarity
than the first comparison. This is because g is entirely missing from the second word in the first com-
parison, but is in the wrong position in the second comparison. If the character g has a high compensa-
tion value relative to its weight, the first comparison will yield a higher degree of similarity. Thus, high
compensation corresponds to a high tolerance for missing characters. In this example, raising the com-
pensation made the Proximity Function correspond more closely to our own notion of similarity: a sin-
gle omission is of less significance than a character misplaced three positions.

Compensation is restricted in that it should never be greater than weight, nor greater than the sum of
weight and bias.

Doc. TE8T7138 Rev. 4.7 1/84 Page 12

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Setting all Symbol Parameters to 1,4 (compensation = 0, bias = 0, weight = 1) is perhaps the most
basic setting. Adjusting the Symbol Parameters is a powerful method for adapting the Proximity Compu-
tation to specific applications. In most cases this adjustment will occur during a product’s design cycle
and then be frozen (or static) for a given application during product operation. Very sophisticated appli-
cations may require dynamic adjustment of the Symbol Parameters in real-time.

2.2.4 Restrictions
This is a brief summary of the PF474 Symbol Parameter value restrictions:
@ Bias + Weight should always be in the range 0-7
@ Compensation must be no greater than Weight or Weight + Bias
® Total weight must be less than 32,768 (affects only strings longer than 67 characters).

The total weight limit is a somewhat involved restriction on the choice of weight and bias which is
necessary to avoid internal arithmetic overflow in the Proximity Computer. The following quick refer-
ence table gives the maximum string length for various settings of bias and weight:

Wmax
0 1 2 3 4 5 6 7
1 127 127 113 96 84 76 70
Brmax 0 127 127 127 104 90 80 73 67
-1 127 127 113 96 84 76 70
-2 127 127 104 90 80 73

Given the maximum weight and bias to be used, look up their intersection in the table to find the max-
imum legal string length. For example, if the maximum bias value used in a given application is zero
and the maximum weight is 6, under all circumstances, strings of length 73 or less are legal. The blanks
correspond to illegal combinations of bias and weight (bias plus weight must be in the range: 0 — 7).

Calculation of total weight is explained in the Advanced Topics section.

Doc. TE81138 Rev. 4.1 1/84 Page 13

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.3 THE STRINGS SECTION

The Strings section holds the two strings to be compared. Each string can be up to 127 bytes long plus
a NULL terminating character. The strings may be loaded by directly writing into the String Memories,
or they may be loaded via a DMA operation. After two strings are loaded, the Command Register may
be used to start the comparison operation.

Generally, one of the strings in the String Memories is loaded as a query string. Then a large number of
database strings are written, one by one, into the other string memory and compared against the first
string. It does not matter which string memory is used for which string: the Proximity Function is sym-
metric with respect to its arguments.

2004,

String A
27F ¢
280,

String B
2FFq¢

The first byte of each string is written to the lowest memory address in its region.

WARNING: If there is no NULL terminator, the PF474 will not behave properly. The NULL is not a
valid character; it is only to be used as a terminator.

The PF474 recognizes only the most recent NULL written as the end of string terminator. There must
not be any NULLs within the string. Thus, the following sequence of program writes is improper:

® Write ‘c’ to location 200,
® Write ‘a’ to location 201,
® Write ‘t’ to location 202,
® Write NULL to location 203,
@ Write NULL to location 204,
But the following sequence does not constitute a programming error:
® Write ‘c’ to location 200,
® Write ‘a’ to location 201,
@ Write ‘t’ to location 202,
® Write NULL to location 204,
® Write NULL to location 203,

This sequence is acceptable because the PF474 remembers 203,, as the last location to which a NULL
was written, which is the proper location for the string terminator. This feature may also be used to
slightly alter or shorten strings already loaded in String Memory by simply writing a new NULL at the
desired location.

Doc. TEBT1738 Rev. 4.7 1/84 Page 14

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.4 THE RANKER SECTION

The primary purpose of the Ranker is to maintain up to 16 slots corresponding to the best matches that
the PF474 has encountered. It occupies addresses 300,,-3FF;, and consists of two major subsections
of 128 bytes each as shown below:

3004,
Ranker Control
37F¢
380,
Ranked List
3FFq¢

The Ranked List contains the slots referred to above and the Ranker Control consists of control and
status registers.

The Ranked List memory is a table with 16 entries (slots), containing the best results of the string com-
parisons. Each entry holds the result of a Proximity Computation and the Internal Record Number (IRN)
of the string matched.

The result of the Proximity Computation is a 32-bit binary fraction called the Proximity Value. The Prox-
imity Value ranges from 0 to 1 (0000 0000, to FFFF FFFF,¢), with a high value denoting close similar-
ity and a low value denoting dissimilarity. The Proximity Value should be thought of as a pure mantissa
number; for example, C000 0000, is 0.C0000000, in base 16, equal to 0.75 in base 10. The least sig-
nificant bit should be viewed as extending to the right to infinity, making a Proximity Value of 1 (FFFF
FFFF,¢), when written as a pure mantissa number, equal to 0.FFFFFFFFFFF...,4 which equals 1.

The 4 byte IRN uniquely identifies the string which ranked. You will note that the strings which were
compared to produce the Proximity Value are NOT stored in the ranker slot. Instead an IRN, typically
a database record number, is stored in the ranker slot. The Next IRN Register is automatically incre-
mented by 1 for each record compared, whether or not the word is ranked. The Next IRN Register can
be re-initialized directly during a series of comparisons, so that the software may conveniently retrieve
the words which ranked. The BUSY bit of the Status Register must be clear (indicating an idle Ranker)
when the Ranked List or any Ranker Control register is accessed.

Doc. TEB8T738 Rev. 4.7 1/84 Page 15

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.4.1 The Ranked List

The Ranked List occupies locations 380, through 3FF,, (128 bytes) and consists of 16 slots of 8 bytes.
The lowest ranked slot is the first slot, occupying addresses 380, through 387,,. The highest ranked
slot is the one corresponding to the value of the Size Register (see below). Thus, if the Size Register
contained OF,, (15), the highest ranked slot would be slot 15 occupying addresses 3F8;, through 3FF,,.

3806

3876

3F8;4

3FFq¢

The Ranked List

Slot 0 (Lowest Ranked)

Slot 15 (Highest Ranked)

Each slot holds a 32-bit Proximity Value as well as a 32-bit IRN. Each of these occupies 4 bytes with
the low order byte in low memory. The diagram below details this layout calling the 32-bit Proximity
Value P with bits 0-31 (0 is low order) and calling the 32-bit IRN / with bits 0-31 (0 is low order):

Byte O
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6
Byte 7

Ranker Slot Layout

Pz Pe Ps P4 P3 P2 P1 Po
P15 P14 P13 P12 P11 P10 P9 Ps
P23 P22 P21 P20 P19 P18 P17 P16
P31 P30 P29 P28 P27 P26 P25 P24
17 16 15 14 13 12 h lo
115 114 113 112 111 110 l9 18
123 122 121 120 119 118 117 16
131 130 129 128 127 126 I25 124
7 6 5 4 3 2 1 0

The ranker memory MUST be initialized after power-up and before the first comparison is initiated.
In addition it should be initialized after a
software initiated reset except in cases where the Status Register was examined and revealed that the
ranker was not busy. In this instance, the reset will temporarily scramble the Ranked List until the next
Proximity Computation is performed. This will restore the Ranked List to its properly ordered form.

This normally consists of setting the entire list to zero.

Doc. TEST138 Rev. 4.1 1/84

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Page 16

2.4.2 Ranker Control

This section describes the Ranker Control portion. The map below details its layout:

3004
LVAL Registers

30716

308¢

Next IRN Registers

3104, | Ranked Register I
31146 | LRANK Register |
3124 [Size Register]
3144, I Next Best Register I

Note that some locations are not currently used in the PF474’s memory space. All unused locations are
reserved for possible future use.

When a record is ranked, the Proximity Value is saved in the LVAL Registers. There are eight LVAL
Registers occupying locations 300,¢ through 307,,. Each is a read/write register, although there is is
generally no reason to ever write to them. LVAL stands for Last Value. The purpose of these registers
is to permit a program to determine the value resulting from the last Proximity Computation performed
(only if the last word examined ranked). This register is not used in most applications since the Proxim-
ity Values of most interest are those which are stored in the ranked list. LVAL will NOT contain a valid
Proximity Value if the current comparison didn’t rank.

Building a 32-bit Proximity Value from the contents of these registers is less than straightforward since
only one nibble (4 bits) is obtained from reading a single register. Calling the 32-bit Proximity Value P
with bits 0-31 (0 is low order) we have the following layout:

LVAI Layout

300, 0 0 0 0 P31 P30 P29 P2s
301, 0 0 0 0 P27 P26 P2s P24
302, 0 0 0 0 P23 P22 P21 P20
303, 0 0 0 0 P19 P18 P17 P16
304, 0 0 0 0 P1s P14 P13 P12
305,¢ 0 0 0 0 P11 P10 P9 Ps
3064 0 0 0 0 Pz Pe Ps P4
3076 0 0 0 0 P3 P2 P1 ~__Po

7 6 5 4 3 2 1 0

Doc. TEB1138 Rev. 4.1 1/84 Page 17

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

The Next IRN Registers together contain the next 32-bit IRN to be used by the PF474. There are eight
Next IRN Registers occupying locations 308, through 30F,,. Each is a read/write register. Next IRN
stands for Next Internal Record Number. Just before a search, or perhaps a phase of a search begins,
the program writes a 32-bit value into these registers, one nibble at a time as indicated by the table
below. After each Proximity Computation is performed, the Ranker circuits of the PF474 attempt to
place it in the ranked list. If the record is ranked, then the value of the Next IRN Register is copied into
the proper ranker slot along with the Proximity Value. Whether or not the computation ranks, but after
the attempt has been made, the Next IRN value is incremented as a 32-bit unsigned binary quantity.
Thus Next IRN is a counter which uniquely identifies each comparison. Calling the 32-bit IRN N with
bits 0-31 (0 is low order) we have the following layout:

Next IRN Layout

308, 0 0 0 0 N31 N30 N29 N28
3094 0 0 0 0 N27 N26 N2s5 N24
30Aq¢ 0 0 0 0 N23 N22 N21 N20
30B¢ 0] 0 0 0 N19 N18 N17 N16
30C,, 0 0 4] 0 N1s N14 N13 N12
30D+ 0 0 0 0 N11 N10 N9 N8
30Eq6 0 0 0 0 N7 N6 N5 N4
30F¢ 0 0 0 0 N3 N2 N1 No
7 6 5 4 3 2 1 0

The Size Register is used to set the size of the PF474’s ranked list. It is a read/write register located at
location 312,4. Only the iower four bits are used:

Size Register

3120 Lo | o | o T o T s3 I s2 [st [so |
7 6 5 4 3 2 1 0

The size of the ranked list can be set to any value from 1 to 16, by writing one less than the desired
size into the Size Register. For example, to set the size to 11 (decimal) one writes 0A;¢ (10 decimal)
which is 00001010 (binary). The upper four bits are ignored during a write but are returned as zero dur-
ing a read operation. Normally the Size Register is just set to its maximum value of OF,¢. Lower values
may slightly improve the PF474’s overall throughput but in general do not do so significantly. How-
ever, if the user code examines the RANKED and LRANK Registers after each computation to save the
actual strings, a smaller ranked list might significantly improve performance by reducing the frequency
with which computations rank and cause the software to save the string.

Doc. TE8T1738 Rev. 4.7 7/84 Page 18

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

When read, the LRANK Register provides the position number in the ranked list that received the last
ranked record. If a record does not rank the LRANK Register is unchanged (see the RANKED Register

below). It is normally used as a read-only register but can be written to. The upper four bits are
returned as zero.

LRANK Register

31 L_o_ | o | o | o T P T P2 [Pt [Po |
7 6 5 4 3 2 1 0

When read, the RANKED Register returns high values (00001111 binary) if the last Proximity Computa-
tion ranked and returns zero otherwise.

RANKED Register

If last record ranked:

310 L0 | o 1 o | o | 1 T + 7T 7 T
7 6 5 4 3 2 1 0

If last record did not rank:

310, [0 | o [o |
7 6 5 4 3 2 1 0

o
o
o
—
o
o
-

NB is a write—only register located at address 314, which establishes the ranker’s general mode as
either normal or next best. In normal mode the ranker selects the best matches it encounters and ranks
them. Next-best mode is used to effectively extend the size of the ranked list by locating up to 15 next
best matches. Typically the first time the PF474 processes a list of records it is used to locate the best
16. If a longer list is desired, the application program copies the IRN and the Proximity Value ranked
lowest during the first pass into the highest ranked slot, clears all the other slots to 0, writes a one into
the NB Register, resets the Next IRN Register, and then uses the PF474 to reprocesses the record list.
The list will contain the next best 15 matches. This process can be repeated to get the next 15 and so
on. In our example we assumed the Size Register contained OF;, (selecting a ranked list size of 16) but
next best processing will work for any ranked list length above 1. It should also be noted that the Size
Register can be set differently during the first pass and subsequent passes. For example, the Size Regis-
ter could be set to 05, for the first pass and to OF, for the second. The NB Register is not affected by
a RESET and, therefore, must be initialized before the first Proximity Computation is initiated.

When writing to the NB Register only the lowest bit is important. ‘1’ selects next-best mode and ‘0’
selects normal mode.

Next Best Register

Doc. TE817138 Rev. 4.7 1/84 Page 19

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.5 A SAMPLE PROGRAM

The program outline that follows is a simple database search, without using DMA to load strings. This
could be used to scan a lexicon to check the spelling and find the closest matches to the given word. |If
the word is correctly spelled (it is found in the lexicon), the best match will be the word itself, and it
will be at the top of the list with a Proximity Value of 1.

Application Initialization:

This initialization is required once for a given application.
@ Symbol Parameters set to 0144
®Size of Ranked List set to 16 (OF¢)

® Next Best mode negated (set to 0)
Search Initialization:

This initialization is required at the beginning of each list search.
@ Next IRN initialized by writing all 0’s
@ Ranked List initialized by writing all 0’s

® Query string written to String A
Search:

This is the procedure to be repeated for each item in the database.
® Wait for Status bit O (SBSY) to read O
@ Next lexicon entry written to String B

@ Start the Proximity Computation and Ranking by writing a GO command to the Command Register
Termination:

When all database entries have been compared to the query string, read the results from the Ranker.
® Wait for Status Register to indicate that the Ranker is done (BUSY = 0)
®Read the Ranked List

The program then uses Internal Record Numbers (IRNs) to retrieve ranking strings from the database, or
stores the IRNs for later reference.

Doc. TE81138 Rev. 4.1 1/84 Page 20

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

2.5.1 Programming the PF474 in DMA Mode

In some applications, CPU control of data transfer is adequate (or the processor is generating the data-
base as it goes along — decompressing the database, for example). When greater speed is desired, and
the database is directly available in memory, the PF474 may be operated in Direct Memory Access
(DMA) mode. In this mode, the PF474 takes control of the system bus to transfer data as rapidly as pos-
sible.

In addition to simply transferring data, the PF474 is capable of building strings from segments stored in
separate locations, and editing in or out certain special symbols, augmenting the pattern matching power
of the PF474. The following example describes the simplest use of the DMA feature, data transfer. Dur-
ing the DMA transfer, the processor is assumed to be halted.

Application Initialization:

This initialization is required once for a given application.
@ Symbol Parameters set to 014
@ Size of ranked list set to 16 (OF,¢)
® Next best mode negated (set to 0)

Search Initialization:

This initialization is required at the beginning of each list search.
® Next IRN initialized by writing all 0's
® Ranked List initialized by writing all 0’s
® Query string written to String A

® DMA Options Register set to COq4. This instructs the PF474 to direct DMA transferred strings to
String B, start Proximity Computations as soon as the transfer is complete, and to do no special DMA
editing.

Search:

This is the procedure to be repeated for each item in the database.

® Write address of next lexicon word (obtained by reading the DMA Register) to DMA Register as
soon as the previous DMA transfer is complete

Termination:

When all database entries have been compared to the query string, read the results from the Ranker.
® Wi it for Status Register to indicate that the Ranker is done (BUSY = 0)
® Read the Ranked List

If the processor is not halted during DMA transfers, the program will have to determine that one DMA
transfer has terminated before starting the next one.

Doc. TE87738 Rev. 4.7 1/84 Page 217

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

ADVANCED TOPICS

3.1 LONG STRING PARAMETER RESTRICTIONS

This section describes the restriction on the Total Weight of strings that applies when the strings are
longer than 67 characters. To avoid an internal arithmetic overflow condition within the PF474, a rule
must be obeyed when setting the weight and bias fields. As previously noted, this rule only restricts the
Symbol Parameters when string length exceeds 67 characters (not including the NULL terminator). In
other words, if an application will never involve strings of length greater than 67, then the choice of
weight and bias must only meet the first two restrictions as explained in the Parameter section — Bias +
Weight must be in the range 0-7, and Compensation must be no greater than Weight or Weight + Bias.

Presented here is a rather invoived but precise mathematical formulation of the restriction. Then we
will reduce this to a simple design table. Even if strings longer than 67 characters are used, the table is
all that is necessary to check in the vast majority of cases. The mathematical formula is presented for
completeness, and to make the table easier to understand.

We begin by defining the tota/ weight (TW) of a string:

L
™W = SiB + W, (L+1)

i=1
In the equation above B, refers to the bias of the jth symbol in the string, W refers to the weight of the
ith symbol and L refers to the length of the string.

To avoid overflow, we must have:

TW < 32,768

Once weights and biases are set, we could use this equation to predict whether a given string will cause
an overflow. However, in most applications, one doesn’t know the strings in advance. By making a
few assumptions about the nature of the strings used, we can reduce this to a usable table.

Let us denote by Wmax the maximum weight we intend to use in a given application. We will assume
the worst case, that it is possible for the entire string to consist of symbols of this weight. Therefore, we
have:

L
TW = WmaxI{(L+1)+ ZfB/

i=1

In the same way, let us denote by Bmax the maximum bias we intend to use in an application. Again,
assume that it would be possible for the entire string to consist of symbols with this bias. Now we
have:

TW = L(L+ 1) (Wmax+ Bmax/2)

Doc. TE81138 Rev. 4.1 1/84 Page 22

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

We now use this relation to generate the quick reference table that also appears in the Parameter sec-
tion:

Wmax
0 1 2 3 4 5 6 7
1 127 127 113 96 84 76 70
127 127 127 104 90 80 73 67
-1 127 127 113 96 84 76 70
-2 127 127 104 90 80 73

Bmax

Given the maximum weight and bias to be used, look up their intersection in the table to find the max-
imum legal string length. Blanks correspond to illegal combinations of bias and weight (bias plus weight
must be in the range: 0 — 7). For example, if the maximum bias value used in a given application is zero
and the maximum weight is 6, then under all circumstances, strings of length 73 or less are legal.

3.2 DMA EDITING

To understand this optional feature of the DMA process, we must first examine the alphabet of the
PF474. The PF474 alphabet contains 256 one byte symbols. One useful interpretation of this alphabet,
which will be assumed in the examples in this section, assigns the first 128 symbols (except NULL) to be
equivalent to the ASCIl code. The remaining 128 characters (those with the most significant bit set)
may be user-assigned to have special properties during DMA transfer. Fach of the 255 alphabet sym-
bols may be independently used to fine—tune the Proximity Computation by adjusting that symbol’s
parameters.

If DMA is not used, only the NULL symbol (00,¢) has a special meaning as a string terminator. The
remaining 255 symbols are valid input string symbols for Proximity Computations and may have their
parameters set individually.

If DMA is used, the FILL character (01,¢) also becomes special: it will always be stripped out by the
DMA process. The 128 symbols with the most significant bit set may also be designated to be special
symbols during DMA, with particular editing properties specified by the user. These properties depend
on the group and type of each special symbol, and are turned on or off by the settings of the
corresponding bits of the DMA Options Register. Automatic special symbol DMA editing is an
advanced feature which enhances throughput performance for some applications.

Doc. TEB8T138 Rev. 4.7 1/84 Page 23

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

The precise definition of each symbol type appears in the following table. The examples which follow
explain their functions. A complete table of special symbols appears in the appendix.

Binary Symbol
Value
00000000 NULL Used to terminate PF474 strings. This symbol is there-
fore not available for other uses.
00000001 FILL During DMA this symbol is always deleted, i.e. read
from external RAM but ignored. It has no other special
properties.

Name Description

10xxxyyy GA’;;’; These are the 64 GA (which stands for group A) sym-
bols. They are treated specially only during DMA and
then only if the DMA Options Register so indicates.
When xxx=yyy we call the resulting symbol SAXXX. For
example, when xxx=yyy=101 we have SAS. SA
stands for state symbol/A-group. When xxx#yyy we
call the resulting symbol TA;:/’;/. TA stands for transition

symbol/A-group.

11xxxyyy GB*™* These are the 64 GB (which stands for group B) sym-
vy bols. They are treated specially only during DMA and

then only if the DMA Options Register so indicates.

When xxx=yyy we call the resulting symbol SB . For

example, when xxx=yyy=101 we have SB.. SB stands
for state symbol/B-group. When xxx#yyy we call the
resulting symbol TB;’;’;. TB stands for transition

symbol/B-group.

Of the remaining six bits of the DMA Options Register, three apply exclusively to Group A symbols
(ENGA, DELA, and DDPA), and three apply exclusively to Group B symbols (ENGB, DELB, and DDPB).
All details of the behavior of ENGA, DELA, and DDPA apply also to their 8 counterparts; their functions
are entirely analogous. ENGA stands for ENable Group A; this bit enables the generation of TA symbols
based on SA symbols. DELA stands for DELete group A state symbols. DDPA stands for Delete DuPli-
cate group A state symbols.

It is worthwhile to note that the use of ENGA/B may lengthen a string and that the use of FILL charac-
ters will shorten the string as it is transferred from external memory to the PF474. It is the user’s respon-
sibility to see that this never results in a string of length greater than 127 (exciuding the NULL termina-
tor).

The examples below demonstrate the editing which modifies an external string as it is transferred to an
internal string. The strings are shown as ASCII and special group A and group B symbols with their hexa-
decimal values.

Doc. TES1138 Rev. 4.7 1/84 Page 24

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

If DELA is set, all SA symbols are filtered out External Internal
(stripped/deleted) during the DMA operation. String (Hex) String (Hex)
in the example below there are three SA sym- a 61 a 61
bols which are deleted. There is also a FILL
symbol which is deleted. For example, if the SAo 80
DMA Options Register contains xx000100: b 62 b 62
SA; 9B
C 63 C 63
SA7 BF
d 64 d 64
FILL 01
e 65 e 65
NULL 00 NULL 00
If DDPA is set, all repeated (duplicated) SA sym- External Internal
bols are filtered out (stripped/deleted) during String (Hex) String (Hex)
the DMA operation. For example, if the DMA a 61 a 61
Options Register contains xx000001:
SA: 89 SAs 89
b 62 b 62
SA3 9B SA3 9B
SAs 9B
C 63 C 63
SA7 BF SA7 BF
SAs 9B SAs 9B
NULL 00 NULL 00
If ENGA is set, the PF474 will generate TA sym- External Internal
bols during DMA as SA symbols are encoun- String (Hex) String (Hex)
tered. Each time a SA symbol differs from the SA: 89 SA: 89
previous one, a TA symbol is generated and 1
inserted after the later SA symbol. Note that all TAo 88
strings are considered to start in state O; the ini- SA: 92 SA: 92
tial SA symbol for state one generates a transi- TA 91
tion. For example, suppose the DMA Options
Register contains xx010000: SA 98 SA’} 9B
TA: 9A
SAs A4 SA4 A4
TA A3
NULL 00 NULL 00
Doc. TE81138 Rev. 4.7 1/84 Page 25

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Processing of states and transitions is performed
independently for SA and SB; each group set
has no influence on the other. Also, since pro-
cessing assumes strings start in the zero state,
the DDPA and DDPB bits cause deletions of ini-
tial zero state symbols in the string. These
features are illustrated in the following example.
Again suppose the DMA Options Register con-
tains xx000001:

The order in which the DMA editing operations
for each group are performed is DDP, ENG,
then DEL. Therefore, if DEL and ENG are set,
transition characters are generated before state
characters are deleted. DDP and ENG work
independently, since transition characters are
not generated for repeated state characters,
even if they are not deleted. With the same
input string, suppose the DMA QOptions Register
contains xx010101:

Doc. TE81138 Rev. 4.7 1/84

External Internal
String (Hex) String (Hex)
SB1 c9 SBi 9
8 67 8 67
r 72 r 72
SAo 80
e 65 e 65
SB1 C9 SB: (@)
a 61 a 61
SA; 89 SA: 89
t 74 t 74
SB1 c9 SB1 c9
e 65 e 65
SBs ED SBs ED
s 73 s 73
t 74 t 74
SA: 89
NULL 00 NULL 00
External Internal
String (Hex) String (Hex)
SB1 C9 SB1 c9
g 67 g 67
r 72 r 72
SAo 80
e 65 e 65
SB C9 SBs 9
a 61 a 61
SA: 89 TAo 88
t 74 t 74
SB1 C9 SB1 C9
e 65 e 65
SBs ED SBs ED
S 73 S 73
t 74 t 74
SA1 89
NULL 00 NULL 00
Page 26

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Many of the above features are combined in External Internal

the following example. This will be instructive String (Hex) String (Hex)

for the reader to study. Suppose the DMA SB: c9 SB: c9

Options Register contains xx110111, so that 1

only DELB is not implemented: TBo &
g 67 g 67
r 72 r 72
SAo 80
e 65 e 65
SB1 a9
a 61 a 61
SA: 89 TAo 88
t 74 t 74
SB1 c9
e 65 e 65
SBs ED SBs ED

83 E9

S 73 s 73
t 74 1 74
SA: 89
NULL 00 NULL 00

Note that if one wanted to have only the NULL terminated string “g r e a t e s t '’ arrive in String
Memory, the desired DMA Options setting would be xx001100.

Applications may require more symbols than just the 128 ordinary characters, yet reassigning state char-
acters may be undesirable, because of the usefulness of their properties with the editing options. When
this is the case, the user may use transition characters as meaningful input symbols.

Doc. TES1138 Rev. 4.7 1/84 Page 27

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

TA and TB characters which appear in external External Internal
memory are not affected by any of the editing String (Hex) String (Hex)
processes, as the following example shows. a 61 a 61
Assume the DMA Options Register contains 4
S 63 S 63
TA¢ BE TA BE
y 7A y 7A
SB; DB TBo D8
o] 6F o) 6F
u 75 u 75
TA¢ BE TAs BE
SB. D2 83 D3
a 61 a 61
SA4 A4
r 72 r 72
e 65 e 65
TA B7 TA B7
NULL 00 NULL 00

In summary, transition symbol generation is completely controlled by ENGA and ENGB and is unaf-
fected by the settings of DDPA, DDPB, DELA, and DELB. The deletion of state symbols is controlled by
the DDP and DEL options, with DEL naturally overriding DDP. Words are assumed to start in state O,
both by the duplicate symbol deletion and transition symbol generating functions. GA and GB character
operations are fully independent of each other. TA and TB characters in the external string are never
affected, and thus may be used as ordinary characters.

3.3 THROUGHPUT CONSIDERATIONS

The PF474 is typically used to search and locate the best matches of a query string to entries within a
database of strings. This section will discuss the throughput rate (in strings examined per second) for
such a task, providing a starting point for estimating how much time any such application will take in a
given system.

Four stages of data processing are significant to this discussion of throughput. The first is CPU activity:
any operations the central CPU has to perform while the database search is in process. These might
include system functions unrelated to the PF474, as well as operations which prepare data strings for
DMA, including the write operations which initiate the DMA transfer. The second is the DMA transfer,
in which the PF474 takes control of the system bus and moves a string into String Memory. The third is
the Proximity Computation, in which two strings are compared and a Proximity Value is produced. The
fourth is Ranking, in which the most recent Proximity Value is sorted into the correct location in the
PF474 Ranker Memory.

The PF474 has a pipeline architecture. Therefore, some of these separate stages are allowed to overlap
in time. In particular, CPU functions can run in parallel with the Proximity Computation and ranking.
Ranking may also overlap DMA transfer and the Proximity Computation.

Doc. TE87738 Rev. 4.7 1/84 Page 28

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

In a typical application, the order of events is as follows.

CPU: Search
Initialization Procedure

PF474 DMA
Transfer

CPU PF474 Proximity
Activities Computation

PF474 DMA PF474
Transfer Ranking

Figure 2. Processing Flow Chart

The CPU first invokes DMA. The end of DMA will initiate the Proximity Computation in parallel
with resumed CPU activity. The next DMA transfer will begin immediately after the latest of
either the completion of the Proximity Computation, or the CPU’s completion of invocation of
DMA (writing to location 8 and 9 of the PF474). In addition, the completion of the Proximity
Computation will initiate the Ranking process, in parallel with (perhaps) the remainder of the
CPU cycle and the DMA transfer. Thus, the repeating cycle for each string is DMA transfer,
parallel Proximity Computation and CPU activity, DMA transfer, parallel activity, and so forth,
with the Ranker operating entirely in parallel (and thus not affecting throughput) after each Prox-
imity Computation.’

1. In rare circumstances, the Ranker may delay the processing of a subsequent string if that string is very short and
transferred at the maximum DMA rate, and the previous comparison produced a result which ranked near the top
of the list. If this Ranking takes longer than both the new DMA transfer and Proximity Computation, then the
termination of that Proximity Computation will be delayed in the pipeline until the Ranker is finished. In the most
extreme case, the time for Ranking can be as long as 175 clock cycles; however, the mean time to rank a string in
the list is only 12.1 clock cycles.

This Ranker delay cannot occur for items which do not rank in the top list, and even then, delays will be rare. For
databases with thousands or tens of thousands of items, ranking rarely occurs. The actual overhead due to Ranker
delay is data and application dependent, and therefore cannot be calculated here. However, in a typical
benchmark test with over 4000 strings of mean length of 17, the overhead time for Ranker delay was 0.01 per cent
of the total time.

Doc. TEB1738 Rev. 4.1 11/83 Page 29

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Thus, the time intervals relevant to throughput are the string DMA transfer time (tpma), CPU preparation
time (tcpy), and Proximity Computation time (tpyxc). From the diagram above, the time for processing
each string tg is:

ts=tpma-+maxtcey, texc)

That is, the processing time is the DMA transfer time plus the time for whichever of the paraliel
processes takes longest. We now focus on each of these time intervals.

The implementation of the Proximity Function in the PF474 is unique among string matching functions in
that the time requirement for the calculation is linear with respect to the length of the strings involved.
The average number of clock cycles for each computation is:

ncyc=2LA+2Lg+10.5

where L, and Ly are the lengths of String A and String B (all references to string length in this section do
not include the necessary terminating NULL of each string). The 10.5 clock cycles represents the aver-
age of a combination of overhead factors, not dependent upon string length. Thus, the time required
for each computation is:

thCZ(ZLA+2LB+1O.5)XtcyC
where tcyc is the clock cycle time.

DMA input time for each database string is:

tDMA=(L+1)X[DCYC

L is the string length, and tpcyc is the time for each byte transfer. This tpeyc depends on the system
implementation; slow memories or timesharing with the CPU may be accommodated with the hardware

WAIT line to the PF474, extending the DMA cycles. Without using wait states, tpcyc is just twice teye

Processor functions which may run in parallel with the PF474 are only limited in that they must avoid
accessing most of the memory space of the PF474. A typical process might prepare for the next DMA
transfer by retrieving a block of data from a disk and decompressing or preprocessing this data. The
minimum processor function is to write to locations 8 and 9 in the PF474 address space to invoke the
next DMA. (This is one of the few PF474 memory locations accessible during Proximity Computations.)
This operation may be performed in parallel with the ongoing Proximity Computation; the DMA Con-
troller will wait for the computation to finish before beginning the actual transfer.

As an example of this throughput calculation, we present here the derivation for the maximum
throughput rate for a 3 MHz PF474-30. This derivation assumes a 3MHz clock (tcyc is 333
nanoseconds), a system which always invokes DMA transfer as quickly as the PF474 will allow, no
DMA timesharing, and memories fast enough to avoid the use of wait states.

This is not merely a theoretical, impossible maximum; systems may easily be constructed which reach
it. Interface circuits for existing systems will typically achieve fifty to ninety—five per cent of this max-
imum throughput.

As the minimum tcpy is 800 nanoseconds (the length of time for writing to locations 8 and 9), and tpyc
is always greater than 3.5 microseconds (the time for comparing zero length strings), only the tpxc term
applies, and the equation is simply

ts=texct+tpma

Doc. TEB1738 Rev. 4.7 1/84 Page 30

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

For DMA transfer without wait states,

Thus,

This yields the following table:

toma= 2L +2)Xteye

For the case where both strings are length L,

[pXC=(4L+1O.5)XtcyC

ts=(4L+10.54+2L+2) X tcye

=(6L+12.5)X 333 nanoseconds

=1988L+4162 nanoseconds

Maximum PF474 Throughput
Strings per second (thousands)
String PF474-25 PF474-30 PF474-36 PF474-40
Length 2.5 MHz 3.0 MHz 3.6 MHz 4.0 MHz

3 81.9 98.3 118.0 131.1

4 68.4 82.1 98.6 109.5

5 58.8 70.5 84.7 94 .1

6 51.5 61.8 74.2 82.4

7 45.8 55.0 66.0 73.3

8 41.3 49.5 59.5 66.1

9 37.5 45.1 54.1 60.1
10 344 41.3 49.6 55.1
12 29.5 35.5 42.6 47.3
15 24.3 29.2 35.1 39.0
20 18.8 22.6 271 30.1
25 15.3 18.4 22.1 24.6
30 12.9 15.5 18.7 20.7
40 9.9 11.8 14.2 15.8
60 6.7 8.0 9.6 10.7
90 4.5 5.4 6.5 7.2
127 3.2 3.8 4.6 5.1

Doc. TE81138 Rev. 4.1 1/84

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Page 37

HARDWARE INTERFACING

4.1 PF474 SIGNAL AND INTERFACE DESCRIPTION » R L_I | v
. . . . A, O [~
The PF474 is electrically interfaced much like a —_
1024 by 8 static RAM. It has a data and address 5 :]B_AC_K
bus, a chip enable input, and a read/write con- A - [#%eQ
trol input line. In addition, it requires a single 3 [I~e
phase clock and a reset line. Three pins control As O [Ine
the DMA operation, using a simple and widely Ae 1~
used protocol. A, [Inc
The PF474 uses its address bus in two ways. *s :IRET
When the PF474 is being accessed as memory % PF474 :liw
{non DMA mode), the low order 10 bits, AO-A9, Ao 15
are used as inputs to address a particular loca- An 5 L Ine
tion within the PF474. The high order 6 bits, A 1o,
A10-A15, are irrelevant and held in the 3-state Ay 1o,
off condition. In DMA mode, the entire 16 bits, A, 1o,
AO0-A15, are used as outputs to address system A5 o,
memory. WAt [o,
wmReQ [[Jo,
ck] 1o,
ono 20 2t D,
Pin Functions
LABEL PIN DESCRIPTION
Vee 40 +5 Volt Power Supply
GND 20 Ground

D0-D7 28-21 Data bus (/nput/Output — Active High — 3-State)

A0-A9 1-10 Address bus (main) (/nput/Qutput — Active High — 3-State)

A10-A15 11-16 Address bus (extension) (Output — Active High — 3-State)

CE 30 Chip Enable (/nput — Active Low)

R/W 31 Read/Write mode select (Input — Read-High/Write-Low)
MREQ 18 Memory REQuest (Output — Active Low)
BREQ 37 Bus REQuest (Output — Active Low)
BACK 38 Bus ACKnowledge (/nput — Active Low)

CLK 19 Clock (Input)
RESET 32 Master Reset (/nput — Active Low)
WAIT 17 Wait (/nput — Active Low)

Doc. TE87738 Rev. 4.7 1/84

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Page 32

4.2 PIN FUNCTIONS

D0-D7 constitute an 8-bit bidirectional data bus. The bus is configured as an output during read
accesses to the PF474. At all other times it is configured as an input.

A0-A9 constitute a 10-bit bidirectional address bus. The bus is configured as an output during PF474
DMA operation. At all other times it is configured as an /nput.

A10-A15 constitute a 6-bit 3—state address bus. The bus is configured as an output during PF474
DMA operation. At all other times it is in the 3-state off condition. These six outputs together with the
ten outputs A0O-A9 enable the PF474 to generate a 16-bit address during DMA operation to facilitate
simple interface to most microprocessor systems.

CE must be asserted (low) to read from or write to the PF474’s internal memory. It must not be
asserted during DMA. The address bus must be valid at the falling edge and, during write cycles, the
data bus must be valid at the rising edge.

R/W is an input which selects read or write mode during non-DMA accesses to the PF474 internal
memory.

MREQ, when asserted (low), indicates that the PF474 is requesting a memory access, and that AO-A15
contain a valid address. MREQ is only active during DMA operation.

BREQ is used to request control of the data and address buses in preparation for a PF474 DMA opera-
tion,

BACK is asserted to the PF474 in response to the assertion of BREQ by the PF474. This signal informs
the PF474 that it has control of the address and data lines. BACK must then remain asserted until the
PF474 is no longer asserting BREQ. This input is ignored when BREQ is high.

CLK is a single phase TTL square wave clock.

RESET master clears the PF474. While RESET is asserted (low), DO-D7 and A0-A9 are configured as
inputs, AT0-A15 are held in their high impedance state, and MREQ and BREQ are held high. The reset
function terminates any PF474 operation in progress including DMA transfers but does not alter previ-
ously entered data. Note, however, that the Ranked List will be temporarily scrambled until a new Prox-
imity Computation has been performed. RESET must be asserted for a minimum of 3 1/2 clock periods.

WAIT is used to lengthen DMA cycles, permitting the use of arbitrarily slow external memories. WAIT
is sampled and latched at each rising edge of the clock.

Doc. TE87738 Rev. 4.7 1/84 Page 33

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

4.3 RATINGS AND CHARACTERISTICS

Absolute Maximum Ratings
Limits .
Symbol Parameter Min 1 Max Units
Vee Supply Voltage -0.3 7.0 Vv
Vin input Voltage -0.3 7.0 \Y
N Operating Temperature 0 70 | Degrees °C
TSTG Storage Temperature -55 125 Degrees °C
D.C. Characteristics
. Limit .
Symbol Description Min Ty:m S Max Units
Vee Power Supply Voltage 4.75 5.0 5.25 \Y
lcc Power Supply Current 300 mA
Vig input HIGH Voltage 2.0 Veet05 |V
Vi Input LOW Voltage -0.3 0.8 \Y
I, input Current 20 BA
Output HIGH Voltage
V . 2.8 3.6 A\
OH (Vee=min, |5, =-400 pA)
Vo, Output LQW Volt1age A 0.25 0.4 v
Vee=min, |5, =1.6 mA)
Lo Output Leakage Current 20 BA
Doc. TE8T138 Rev. 4.1 1/84 Page 34

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

4.4 INTERFACE TIMING

Although the PF474 performs internal operations beyond the power of most sophisticated computers,
the interface requirements are scarcely more complex than those of a simple memory circuit. The basic
I/O operations and the DMA protocol are designed for easy interface and high throughput. Below are
waveform diagrams summarizing the interface and timing requirements of the PF474.

4.4.1 Reset.
tr ts
teo
CLK
tcH
fove tasT
w
. y
RESET j]
ﬁ‘RFﬂ
BREQ, >7F
MREQ
’._>O_-‘
e Y
DO-D7,
AO-A15

This diagram shows the use of RESET. Asserting RESET terminates all PF474 operations, including DMA.
The RESET signal does not affect PF474 memory, such as parameter tables, option settings, and String
Memories. RESET must be continuously asserted for at least three and one-half clock periods, asynchro-
nous to clock CLK. RESET forces MREQ and BREQ high (not asserted), configures data_and address
lines (0-9) as inputs, and places address lines (10-15) in the high impedance off state. RESET may be
asserted independent of the state of CE and BACK but CE must be high at the end of the RESET cycle.

Doc. TE81138 Rev. 4.1 1/84 ' Page 35

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

Power ed

4.4.2 Read/Write Cycles.

-

1]

tawe tRwC
trca twca
—_— r
CE / \
\ \
ol tas e fe—— tRCI —o fe——— twCl——o
e tAH-»
AN B s o
— ho— L AH
R / W _1 - \
L y
[lavoresd, [|aoore
A0 -A9 — <\ VALID ‘! \L vm_mj
—oi tRDH| twy
tacc |
READ
DO-D9 INDETERMINATE Xl DATA
VALID T
— 'csot— le—
READ CYCLE WRITE CYCLE

Figure 3. Read/Write Cycle Timing

This diagram shows the signals involved in read and write operations. The address and R/Wiignals
must be valid t,¢ before the falling edge of CE. These lines are sampled at the falling edge of CE and

need to be held valid only t,,,

after CE is asserted.

In the read cycle (shown to the left), CE must

remain low until the data from the PF474 becomes valid and has been sampled by the system. In the
write cycle, the data is sampled by the PF474 at the rising edge of CE.

Doc. TE87138 Rev. 4.7 1/84

by I Cm ner.com El ectronic-Library Service CopyRi ght 2003

Page 36

Power ed

4.4.3 DMA Cycle.

|
]
r

—m AW

—=1 '8RH

o

3

m

o
rJT
——

_ —{ tBRD \r* E}
S AV AVAYAYAYAYAYARA TR

I Mp
- ¥
MREQ / /
ﬂ'nd'- —lmple— R
NATT . 3 —otWSle— R
as i Hﬂ‘
B i _"wsL ! "WH[= | sl

po-ats 4 (O] [s N e WO -

| twps t
—‘ r WDH

k
. 0 ¥ tpas tpas—{—* s
4 - DAS — R 1
DO-D7 y DATA |
) [1 vaup A DATA=0 _/
3 >0
te—tDDS o 1DDS
BUS CAPTURE DMA READ - NO WAIT DMA READ ~ WITH WAIT BUS RELEASE

1) Write of the second DMA Register
2) Next sequential address

Figure 4. DMA Cycle Timing

This diagram displays the features of PF474 DMA operation. It consists of four sections: bus capture, a
DMA operation without WAIT states (such as might be used to read a fairly fast memory), a DMA opera-
tion with a single WAIT state inserted (for reading a moderately slow memory), and bus release.

DMA operation is invoked by writing the address of the source string into the PF474 DMA Register.
The left edge of the diagram shows the second address byte being written into the DMA address regis-
ter. Note that the PF474 requests the bus by dropping BREQ during the write operation, while CE is still
low (even if String Control is still busy). BACK signals to the PF474 that the CPU has relinquished

Doc. TF87738 Rev. 4.7 1/84 Page 37

by I Cm ner.com El ectronic-Library Service CopyRi ght 2003

control of the system bus so that DMA operation may begin. BACK may be delayed indefinitely without
ill effect, but must stay asserted throughout DMA. Premature release will cause unpredictable results.
The PF474 will drive the address lines as soon as BACK is asserted (low), and CE4 is released (high).
MREQ falls at least one clock cycle later. If the Proximity Computer is still busy with a previous compu-
tation, MREQ will wait until the previous Proximity Computation has been completed.

The next section of the diagram shows one DMA cycle without the insertion of WAIT states. When per-
forming DMA read operations, the PF474 generates MREQ to request an external al memory read opera-
tion. Address lines AO-A15 are valid_before MREQ falls and remain valid while MREQ is low. MREQ
operates synchronous to the clock: MREQ falls after the rising edge of the clock, and rises after the
second falling clock edge. The Data lines DO-D7 are sampled at the rising edge of MREQ. Therefore,
for maximum DMA throughput, the memory must be able to respond with valid data one clock cycle
after MREQ falis.

For slower memories, WAIT states should be inserted via the WAIT signal as illustrated in the third part
of the diagram. When the memory accessed has a slower response than one clock cycle, each MREQ
cycle time may be adjusted to any number of clock cycles beyond the two required for normal opera-
tion through the use of WAIT. WAIT is sampled at each rising edge of the clock pulse while MREQ is
low. When WAIT is sampled low, the DMA read operation is extended. One clock pulse (1/2 clock

cycle) after WAIT is sampled high, MREQ will rise, and the data will be sampled, completing the DMA
cycle.

The right edge of the diagram shows the release of the bus by the PF474. This will occur after the
PF474 has read a NULL character. MREQ remains high after the terminating NULL, although the next
address is temporarily placed on the bus. BREQ, which remained low for the duration of DMA, rises,
signifying the relinquishing of bus control. The CPU may resume control immediately.

Doc. TES7738 Rev. 4.7 1/84 Page 38

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

A.C. Characteristics

Limits
Cycle Symbol Parameter - Units
y Y Min Max
f Frequency of Operation 1 . MHz
teve Clock Period (cycle time) -2 1000 nsec
t Clock Low -3 nsec
Clock cL ‘ -
ten Clock High - nsec
t, Clock Rise Time 20 nsec
t Clock Fail Time 20 nsec
NG RESET to Bus Release 100 nsec
tewc Read/Write Cycle Time 400 nsec
Read/ o
. t Address Setup 10 nsec
Write AS
tan Address Hold 40 nsec
trca Read Cycle Active 250 1500 nsec
trci Read Cycle Inactive 150 nsec
Read tace Read Access 250 nsec
teeo Chip Enable to Output Delay 40 nsec
trDH Read Data Hold 40 nsec
twea Write Cycle Active 200 1500 nsec
. t Write Cycle Inactive 200 nsec
Write wel
twos Write Data Setup 20 nsec
twDH Write Data Hold 50 nsec
toma DMA Cycle Time 2 teve
tsrD Bus Request Delay from CE 125 nsec
tgas Bus Acknowledge Setup 0 nsec
twp Memory Request Delay 60 nsec
DMA toas DMA Address Setup 20 nsec
tws Wait Setup 20 nsec
ti Wait Hold 50 nsec
tops DMA Data Setup 30 nsec
torm Bus Request Hold 80 nsec
1. f_, = 2.5 for PF474-25, 3.0 for PF474-30, 3.6 for PF474-3.6, and 4.0 for PF474-40.
2. 1000/f..
3. teymin/2 -5
4. teymin)/2 -5
Doc. TE81738 Rev. 4.7 1/84 Page 39

Powered by I Cminer.com El ectroni c-Li brary Service CopyR ght 2003

