aaaaa T 4-17-5|

engineering
data

166

1 Introduction
Reset——p»
Analyse—P
Error 4— LN 16 bit
BootFromROM—, System \11%/ Processor
Clockin—»| Services
VCC——
GND—- Cink LinkSpecial
CapPlus Services 4— LinkOSpecial
CapMinus i 4— Link123Special
/1_13__:\ Link Linkin0
Timers Interface | LinkOuto
’L'—’m ' Lk l4— LinkIn1
2k bytes 1 N Interface 1 p» LinkOut1
of
on-chip \—2) (=N Gk |&— Linkin2
RAM \—1A4__Interface [~ LinkOut2
"T'\ Link Linkin3
L N N4 Interface —# LinkOut3
ProcClockQut €— 16
notMemCE 4—| External N V 4— EventReq
notMemWrBO-1 4— Memory Event |~ » EventAck
MemBAcc—p| Interface
MemWait—p 16 > MemAOQ-15
MemReq—p]
MemGranted €— < s > MemD0-15

Figure 1.1: IMS T212 block diagram

1 Introduction ' 167

The IMS T212 ftransputer is a 16 bit CMOS microcomputer with 2 Kbytes on-chip RAM for high speed
processing, an external memory interface and four standard INMOS communication links. The instruction set
achieves efficient implementation of high level languages and provides direct support for the occam madel
of concurrency when using either a single transputer or a network. Procedure calls, process switching and
typical interrupt latency are sub-microsecond. A device running at 20 MHz achieves an instruction throughput

of 10 MIPS.

The IMS T212 can directly access a linear address space of 64 Kbytes. The 16 bit wide non-multiplexed
external memory interface provides a data rate of up to 2 bytes every 100 nanoseconds (20 Mbytes/sec) for
a 20 MHz device. System Services include processor reset and bootstrap control, together with facilities for

error analysis.

The INMOS communication links allow networks of transputers to be constructed by direct point to point
connections with no external logic. The links support the standard operating speed of 10 Mbits per second,
but also operate at 5 or 20 Mbits per second.

The IMS T212 is designed to implement the occam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C and Pascal. Access to specific features of the IMS T212is
described in the relevant system development manual. Access to the transputer at machine level is seldom
required, but if necessary refer to The Transputer Instruction Set - A Compiler Writers’ Guide. -

This data sheet supplies hardware implementation and characterisation details for the IMS T212. Itis intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam. For convenience of description, the IMS T212 operation is split
into the bastc blocks shown in figure 1.1. .

100

2

Pin designations

Table 2.1 IMS T212 system services

Pin In/Out Function
VCC, GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in Input clock
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstraps from external ROM or from link
HoldToGND Must be connected to GND

Table 2.2: IMS T212 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemAO0-15 out Sixteen address lines
MemDO0-15 infout | Sixteen data lines
notMemWrB0O-1 out Two byte-addressing write strobes
notMemCE out Chip enable
MemBAcc in Byte access mode selector
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted

Table 2.3: IMS T212 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4: IMS T212 link

Pin In/Out Function
Linkin0-3 in Four serial data input channels
LinkOut0-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
Link0Special in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signat names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 208.

e g e e

169

3 Processor

The 16 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 2 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 64 Kbytes

of memory via the Externai Memory Interface (EMI).

3.1 Registers
The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of

registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variaples are kept.
The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, B and C registers which form an evaluation stack.

A, B and C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes Binto C, and A into B, before loading A. Storing a value from A, pops B i_nto Aand Cinto B,

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness

and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in The Transputer Instruction Set - A Compiler Writers' Guide.

Registers Locals . _ Program

A

B

C
Workspace >

Next inst &

Operand

Figure 3.1: Registers

LEAY 5 IMS T212 engineering data

3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in-
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Function Data

7 43‘0

Operand Register

Figure 3.2: Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these, shown in table 3.1, are used to encode the most important functions.

Table 3.1: Direct functions

foad constant add constant

load local store local load local pointer
load non-local store non-local

jump- conditional jump call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The foad constant instruction enables values between 0 and 15 to be
toaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming fanguages such as occam, C or Pascal. -

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

e m———— 4

3 Processor 7 171

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secendly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.23 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as

add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.24 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2; Expression evaluation

Program Mnemonic
x=0 ide 0
st X
X == #24 pfix 2
lde 4
) X
Xi=y+2 ial Yy
al ¥4

add
st X

3.25 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high ievel language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive two instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance, There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

Wb arepme—p——E A e e e

172 5 IMS T212 engineering data

33 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel {concurrently). Processes may be assigned either high or low priority, and there may be any number
of each {page 173).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe-
cuted together, sharing the processor time. This removes the need for a software kernel.

At any fime, a concurrent process may be

Active - Being executed.
- On a list waiting to be executed.

Inactive - Ready to input.
- Ready to output.
- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. i allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 173). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S'is executing and P, Q and R are active,

awaiting execution. Only the low priority process queue registers are shown; the high priority process ones

perform in a similar manner.

Registers . Locals Program
FPtrt (Front] {—pl S
P
BPtr1 (Back)
>
Q g~
A >
R
B ¢
C l » S
Workspace
Next Inst
. Operand
Figure 3.3: Linked process list
Table 3.3: Priority queue control registers
Function 7 High Priority | Low Priority
Pointer to front of active process list Fptr0 Fptr1
Painter to back of active process list BpirQ Bptr1

i
!

3 Processor 173

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 177). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1ms apart.

A process can only be descheduled on certain instructions, known as descheduling points (page 177). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 us, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the pracess model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the

main process continues.

34 ' Priority

The IMS T212 supports two levels of priority. Priority 1 (low priority) processes are executed whenever there
are no aclive priority 0 (high priority) processes.

High priority processes are expected to execute for a short ime. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until

it completes procassing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected. : : : -

Low priority processes are periodically timesliced to provide an even distribution of processor'time between
computationally intensive tasks. ' '

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer’s time; i.e. it has a distribution of descheduling points (page 177).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 millisecond at
the standard frequency of 5 MHz),

If a high priority process is waiting for an external channe! to become ready, and if no other high priority
process is active, then the interrupt fatency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 53 cycles (assuming use of on-chip RAM).

5 IMS T212 engineering data

wunications

between processes is achieved by means of channels. Process communication is point-to-
sed and unbuffered. As a result, a channel needs no process queue, no message queue and
fer.

een two processes executing on the same transputer is implemented by a single word in
inel between processes executing on different transputers is implemented by point-to-point
ssor provides a number of operations to support message passing, the most important being
ind ouiput message.

age and oulput message instructions use the address of the channel to determine whether
nternal or external. Thus the same instruction sequence can be used for both, allowing a
ritten and compiled without knowledge of where its channels are connected.

ich first becomes ready must wait until the second one is also ready. A process performs an
y loading the evaluation stack with a pointer to a message, the address of a channel, and
umber of byles to be transferred, and then executing an input message or oulput message
| is transferred if the other process is ready. If the channel is not ready or is an external one
deschedule.

has itwo 16 bit timer clocks which ‘tick’ pericdically. The timers provide accurate process
processes to deschedule themselves until a specific time.

sessible only to high priority processes and is incremented every microsecond, cycling com-

dimately 65 milliseconds. The other is accessible only to low priority processes and is incre-
1 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately

Table 3.4: Timer registers

0 Current value of high priority (level 0) process clock
(1 Current value of low priority (level 1) process clock
(tReg0 | Indicates time of earliest event on high priority (level 0) timer queue
(tReg1 Indicates time of earliest event on low priority (level 1) timer queue

1e of the processor clock can be read by executing a load timer instruction. A process can
rm a timer input, in which case it will become ready to execute after a specified time has
The timer input instruction requires a time to be specified. If this time is in the ‘past’ then the
no effect. If the time is in the ‘future’ then the process is descheduled. When the specified
the process is scheduled again.

s two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

3 Processor

175

Timer0

TNextRego0

TPtrLocO | }

Program

Workspaces
—1 .
—— 21
Empty
31 1%

Figure 3.4: Timer registers

P —

‘uction set summary

Jades table 4.7. gives the basic function code set (page 170). Where the operand is less
gle byte encodes the complete instruction. If the operand is greater than 15, one prefix
) is required for each additional four bits of the operand. If the operand is negative the first
n will be nfix.

Table 4.1: prefix coding

Function Memory
Mnemonic code code

lde #3 #4 #43
Ide #35

is coded as
pfix #3 : #2 #23
lde #5 #4 #45
lde #987

is coded as
pfix #9 - #2 #29
pfix #8 #2 #28
Ide #7 #4 #47
lde -31 (ldc #FFE1)

is coded as
nfix #1 #6 #61
lde #1 #4 #41

.17 give details of the operation codes. Where an operation code is less than 16 (e.g. add.
05), the operation can be stored as a single byte comprising the operate function code F and
in the example). Where an operation code is greater than 15 (e.g. /add: operation code 16),
ion code 2 is used to extend the instruction.

Table 4.2: operate coding

Function Memory
Mnemeonic code code
add {(op. code #5) #FS
is coded as
opr add #F #F5
ladd (op. code #16) #21F6
is coded as
pfix #1 #2 #21
opr #6 #F #F6

4. Instruction set summary

177

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing in
internal memory. The number of cycles is given for the basic operation only; where relevant the time for the
prefix function {one cycle) should be added. For a 20 MHz transputer one cycle is 50ns. Some instruction
times vary. Where a letter is included in the cycles column it is interpreted from table 4.3.

Table 4.3; Instruction set interpretation

Ident

lntérpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.
n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in

table 4.4.
Table 4.4; instruction features
Ident Feature See page:
D The instruction is a descheduling point 177
E The instruction will affect the Error flag 177, 186
41 Descheduling points I

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 172). Tﬁey are
also the ones at which the processor will halt if the Analyse pin is asserted (page 185).

Table 4.5: Descheduling point instructions

input message output message output byte output word

timer alt wait timer input stop on error alt wait

jump loop end end process ~ stop process
4.2 Error instructions

The instructions in table 4.6 are the only ones which can affect the Error flag (page 186) directly.

Table 4.6: Error sefting instructions

add
multiply
long add
set error
check word

add constant

fong subtract
testerr

subtract
divide
long divide

check subscript from 0 check single

remainder

check count from 1

5 IMS T212 engineering data

Table 4.7: IMS T212 function codes

Memory Processor D
Code Mnemonic Cycles Name E
()4 j 3 jump D
1X Idip 1 load local pointer
2X plix 1 prefix
3X Idni 2 load non-locat
4X idc 1 load constant
5X idnip 1 load non-local pointer
6X nfix 1 negative prefix
7X idl 2 load local
8Xx adc 1 add constant E
9x call 7 call
AX Cj 2 conditional jump (not taken)
4 conditional jump (taken)
BX ajw 1 adjust workspace
CX eqc 2 equals constant
DX stl 1 store local
EX stnl 2 store non-local
FX opr - operate
Table 4.8: IMS T212 arithmetic/logical operation codes
Memory Processor D
Code Mnemonic Cycles Name E
24F6 and 1 and
24FB or 1 or
23F3 xor 1 exclusive or
23F2 not 1 bitwise not
24F1 shl n+2 shift left
24F0 shr n+2 shift right
F5 add 1 add E
FC sub 1 subtract E
25F3 mul 26 multiply E
22FC div 23 divide E
21FF rem 21 remainder E
F9 gt 2 greater than
F4 diff 1 difference
25F2 sum 1 sum
F8 prod b+4 product

4 Instruction set summary

Table 4.9 IMS T212 long arithmetic operation codes

Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 2 long sum
4F 24FF diff 2 long diff
31 23F1 Imul 17 long multiply
1A 21FA Idiv 19 long divide E
36 23F6 Ishl n+3 long shift left (n<16)
n-12 long shift left(n>16)
35 23F5 Ishr n+3 long shift right (n<16)
n-12 long shift right (n>16)
19 21F9 norm n+5 normalise (n<16)
n-10 normalise (n>16)
3 normalise (n=32)
Table 4.10; IMS T212 general operation codes
Operation | Memory Processor . D
Code Code Mnemonic Cycles -Name E
00 FO rev 1 reverse
3A 23FA | xword 4 extend to word
56 25F8 cword 5 check word E
iD 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

ot e i g

180 5 IMS T212 engineering data
Table 4.11: IMS T212 indexing/array operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles : Name E
02 F2 bsub 1 byte subscript
0A FA wsub 2 word subscript
34 23F4 bent 2
3F 23FF went 4
01 F1 [s] 5
3B 23F8 sb 4
4A 24FA move 2w+8 move message
Table 4.12: IMS T212 timer handling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
22 22F2 {dtimer 2
28 22FB tin 30 timer input (time future) D
4 timer input {time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D
48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer
Table 4.13: IMS T212 input/output operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
07 F7 in 2w+19 input message D
0B FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 D
12 21F2 resetch 3 reset channel
43 24F3 alt 2
44 24F4 altwt 5 alt wait (channel ready) D
17 alt wait (channel not ready) D
45 24F5 altend 4
49 24F9 enbs 3 enable skip
30 23F0 diss 4 disable skip
48 24F8 enbc 7 enable channel (ready)
5 enable channel {not ready)
2F 22FF disc 8 disabte channel

181

4 Instruction set summary
Table 4.14: IMS T212 control operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
20 22F0 ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D
5 loop end (exit) D
Table 4.15: IMS T212 scheduling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
oD FD startp 12 start process - -’ D
03 F3 endp 13 end process b
39 23F9 runp 10 run process ..
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current pricrity
Table 4.16: IMS T212 error handling operation codes
Operation | Memory Processor ' , D
Code Code Mnemonic - Cycles L Name E
13 21F3- | csub0 2 check subscript from 0 E
4D 24FD- | centt 3 check count from 1 7 E
29 22F9 testerr 2 test error false and clear (no error)
3" | test error false and clear (error)
10 21F0 seterr 1 set error . E
55 25F5 stoperr 2 stop on-error-{no error) D
57 25F7 clrhalterr 1 clear hait-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error
Table 4.17: IMS T212 processor initialisation operation codes
OCperation | Memory Processor D
Code Code Mnemonic Cycles | Name E
2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25F0 sthb 1 store high priority back pointer
1C 21FC stif 1 store low priority front pointer
17 21F7 stib 1 store low priority back pointer
54 25F4 sttimer 1 store timer

R oarnen——y

182

5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended: if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power-
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

52 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1uF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the nega-
tive terminal should be connected to CapMinus. Total PCB track length should be less than 50mm. The
connections must not touch power supplies or other noise sources.

vVCC
. CapPlus P.C.B. track

' _LDecoupIing

Pha:{sg(-)loscked = Capacitor
_oop 1uF

|
ﬂ T CapMinus P.C.B. track

GND

Figure 5.1: Recommended PLL decoupling

5.3 Clockin

Transputer family components use a standard clock frequency, supplied by the user on the Clockin input.
The nominal frequency of this clock for all transputer family components is 5MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockin,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockin pulse widths are met.

Oscillator stability is important. Clockin must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockin must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

rmant miEes me

[E———

o T e TR L 3 £ ¥ - [i -l J L oS - LR e e A e

5 System services 183

Table 5.1: Input clock

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TDCLDCH | Clockin pulse width low 40 ns
TDCHDCL | Clockin pulse width high 40 ns
TOCLDCL | Clockin period 200 ns 1,3
TDCerror | Clockin timing error +0.5 ns 2
TDC1DC2 | Difterence in Clockin for 2 linked devices 400 ppm 3
TDCr Ciockln rise time 10 ns 4
TDCf Clockln fall time 8 ns 4
Notes

1 Measured between corresponding points on cansecutive falling edges.
2 Variation of individual falling edges from their nominal times.
3 This value aliows the use of 200ppm crystal oscillators for two devices connected together by a link.

4 Clock transitions must be monotonic within the range VIH to VIL (page 204).

TDCerrar

1.5v — — — N -
0.8y — — —— -\ —————

TDCLDCH

4

Figure 5.2: Clockln timing

5.4 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC
is valid Clockin should be running for a minimum period TDCVRL before the end of Reset. The falling edge
of Reset initialises the transputer and starts the bootstrap routine. Link outputs are forced low during reset;
link inputs and EventReq should be held low. Memory request (DMA) must not occur whilst Reset is high but
can occur before bootstrap (page 198). If BootFromRom is high bootstrapping will take place immediately
after Reset goes low, using data from external memory; otherwise the transputer will await an input from any
link. The pracessor will be in the low priority stale.

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot-
FromRom may be dynamically changed but must obey the specified timing restrictions.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two
bytes in external memory, at address #7FFE. This location should contain a backward jump to a program in
ROM. The processor is in the low priority state, and the W register points to MemStart (page 187).

<9 IWla 1< lic Chigilicerily Jdald

Table 5.2; Reset and Analyse

PARAMETER MIN NOM MAX | UNITS | NOTE
dower valid before Reset 10 ms
Reset pulse width high 8 Clockin 1
Slockin running before Reset end 10 ms 2
Analyse setup before Reset 3 ms
Analyse hold after Reset end 1 ns
3ootFromRom setup 0 ms
30otFromRom hold after Reset 50 ms
3ootFromRom hold after Analyse 50 ms

iods of Clockin TDCLDCL required.

er-on reset.

14//”//’///////////////A//ﬁ///////
]

TDCVRL

TPVRH _>|4————>TRHRL

_/ N
N

[
/ TBRVRL bl | |———{TRLBRX

;Rom /jf y //

Figure 5.3: Transputer reset timing with Analyse low

TRHARL

\ Ve

TAHRH j —» TRLAL

/]
TBRVAL<- 1} #| TALBRX

nRom)/ // N————

Figure 5.4: Transputer reset and analyse timing

§ System services ' 185

If BootFromRom is connected low {e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on any one of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

It the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process. The
memory space immediately above the loaded code is used as work space. Messages arriving on other links
after the control byte has been received and on the bootstrapping link after the last bootstrap byte will be
retained until a process inputs from them.

5.6 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then four more bytes are expected on the same link. The
first two byte word is taken as an internal or external memory address at which to poke (write) the second
two byte word. If the control byte is 1 the next two bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link. .

Foliowing such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
{page 177). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary 0 permit analysis of the halted machine. . s : :

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer, Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and flink transfers have ceased. 1f BootFrom-
Rom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a control
byte on any link. If Analyse is taken low without Reset going high the transputer state and operation are
undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3: Register values after arialyse

! MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM. :

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from fink.

A The value of / when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (i.e. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.

100 "5 IMS T212 engineering data

58 Error

The Error pin is connected directly to the internal Error flag and follows the state of that flag. If Error is high
it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero, array
bounds violation or software setting the flag directly (page 177). Once set, the Error flag is only cleared by
executing the instruction testerr (page 176). The error is not cleared by processor reset, in order that analysis
can identify any errant transputer (page 185).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
hal; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the Errorflag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind. '

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect. -

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaitOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being-carried
out by the pre-empted low priority process. : - :

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register / points two bytes
past the instruction which set Error. After halting due to the Analyse pin.being taken high, register / points
one byte past the instruction being executed. In both cases / wili be copied to register A. :

Master Latch analyse,, Slave Slave
Transputer Transputer
T u
| ransputer N Tosot J 0 - 1 i
Event* Error[OI | rror[ﬂ
| Slave | | Slave
(transputer links not shown) Transputer Transputer
2 3
Error[2] I
Error[3]

Figure 5.5: Error handling in a multi-transputer system

B L

187

6 Memory

The IMS T212 has 2 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 189). The transputer can also access an
additional 62 Kbytes of external memory space. Internal and external memory are part of the same linear
address space.

IMS T212 memory is byte addressed, with words aligned on two-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered 0. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #8000 and extends to #87FF. User memory begins at
#8024, this location is given the name MemStart.

A reserved area at the bottom of internal memory is used to implement link and event channels.
Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPirL.oc? for low

priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IniSaveloc

locations when a high priority process pre-empts a low priority one.

External memory space starts at #8800 and extends up through #0000 to #7FFF. ROM bootstrapping code
must be in the most positive address space, starting at #7FFE. Address space immediately below this is
conventionally used for ROM based code.

o e
TR

5 IMS T212 engineering data

- Map lo Byte address Word offsets Occam Map

| #7FFE

1 #0000 .

#8800 - Start of external memory - #0400 |
#8024 MemStart MemStart #12

vel.oc #8022 \
saveloc #8020
veLac #801E
veloc #801C
veloc #801A
reLoc #8018
aveloc #6016
ci #8014
c0 #8012 >Note i ,
1 #8010 #08 Event
nput #800E #07 Link 3 Input
nput #800C ' #06 Link 2 Input
nput #800A #05 Link 1 ([nput
nput #8008 #04 Link 0 Input
Jutput #8006 #03 Link 3 Qutput
Jutput #8004 #02 Link 2 OQutput
Jutput | #8002 #01 Link 1 Output
Jutpuf | #8000) (Base of memory) #00 Link 0 Quiput

Figure 6.1: IMS T212 memory map

scations are used as auxiliary processor registers and should not be manipulated by the user.
)cessor registers, their contents may be useful for implementing debugging tools {Analyse,
35). For details see The Transputer Instruction Set - A Compiler Writers' Guide.

LAINTIVa CVIZWE [Y A A . 4 LSOl YV . Rl
189

7 External memory interface

The IMS T212 External Memory Interface (EMI) allows access to a 16 bit address space via separate address
and data buses. The data bus can be configured for either 16 bit or 8 bit memory access, allowing the use of
a single bank of byte-wide memory. Both word-wide and byte-wide access may be mixedin a single memory

system (page 195).

741 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockin. its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockin Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering appendix).

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or
falling edges of ProcClockOut.

Table 7.1: ProcClockQut

SYMBOL PARAMETER MIN NOM | MAX | UNITS | NOTE |

TPCLPCL | ProcClockOut period a1 | a a+l ns 1

TPCHPCL | ProcClockOut pulse width high b-2.5 b b+2.5 ns 2

TPCLPCH | ProcClockQut pulse width low , c ns 3

TPCstab | ProcClockOut stability _ 4 Yo 4
Notes

1 ais TDCLDCL/PLLX.
2 b is 0.5+TPCLPCL (half the processor clock period).
3 cis TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at carresponding points on
the cycles.

— o o e — e w— —

TPCHPCL

TPCLPCH

TPCLPCL

Figure 7.1: IMS T212 ProcClockOut timing

130 5 IMS T212 engineering data

7.2 Tstates
The external memory cycle is divided into four Tstates with the following functions:

T1 Address and control setup time.
T2 Data setup time.
T3 Data read/write.

T4 Data and address hold after access.

Each Tstate is half a processor cycle TPCLPCL long, displaced by approximately one fourth of a cycle from
ProcClockOut edges. T2 can be extended indefinitely by adding externally generated wait states of one
complete processor cycle each.

An external memory cycle is always a complete number of cycles TPCLPCL in length. The start of T1 always
coincides with the low phase of ProcClockOut.

7.3 Internal access

During an internal memory access cycle the external memory interface address bus MemAO0-15 reflacts
the word address used to access internal RAM, notMemWrBO-1 reflect the internal read/write operation,
notMemCE is inactive and the data bus MemD0-15 is tristated. This is true unless and until 2 DMA {memory
request) activity takes place, when the lines will be placed in a high impedance state by the transputer.

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 185). '

74 MemAO-15

External memory addresses are output on a non-multiplexed 16 bit bus. The address is valid at the start of
T1 and remains so until the end of T4, with the timing shown. Byte addressing is carried out internally by the
IMS T212 for read cycles. For write cycles the relevant bytes in memory are addressed by the write enables
notMemWrBO0-1.

The transputer places the address bus in a high impedance state during DMA.

7.5 MemDO0-15

The non-multiplexed data bus is 16 bits wide. Read cycle data may be set up on the bus at any time after the
start of T1, but must be valid when the IMS T212 reads it during T3. Data can be removed any time during
T4, but must be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T2 and removed at the end of T4. It is normally written into
memaory in synchronism with notMemCE going high.

The data bus is high impedance except when the transputer is writing data. If only one byte is being written,
the unused 8 bits of the bus are high impedance at that time. In byte access mode MemD8-15 are high
impedance during the external memory cycle which writes the most significant (second) byte (page 195).

If the data setup time for read or write is too short it can be extended by inserting wait states at the end of
T2 (page 196).

7 External memory interface

191

Table 7.2: Read

T212-20 T212-17
SYMBOL PARAMETER MIN | MAX | MIN [MAX | UNITS | NOTE
TAVEL Address valid before chip enable low 13 16 | 15 19 ns
TELEH Chip enable low 56 63 65 72 ns
TEHEL Delay before chip enable re-assertion 35 46 40 51 ns 1
TEHAX Address hold after chip enable high 20 24 21 27 ns
TELDrV Data valid from chip enable low 40 43 ns
TDrVEH Data setup before chip enable high 11 15 ns
TEHDrZ | Data hold after chip enable high 0 0 ns
TWEHEL | Write enable setup before chip enable low | 14 18 ns 2
Notes
1 These values assume back-to-back external memory accesses.
2 Timing is for both write enables notMemWrB0-1.
Tstate | 11 | T2 | T8 | T4 | Tt | T2

ProcClockOut W

MemAO0-15 Address
4———3TEHAX :
TAVEL » TELEH o ¢————P|TEHEL
notMemCE N '// . \L ,
’ TDIVEH
TELDrV
MemDO-15 <K

|<-> TWEHEL
notMemWrB0-1 J/

Figure 7.2: IMS T212 external read cycle

7.6 notMemWrB0-1

Two write enables are provided, one to write each byte of the word. When writing a2 word, both write enables
are asseried; when writing a byte only the appropriate write enable is asserted. notMemWrB0 addresses
the least significant byte. The write enables are active before the chip enable signal notMemCE becomes

active, thus reducing memory access time and the risk of bus contention.

Data must be strobed into memory by, or in conjunction with, notMemCE, as the write enables are not
guaranteed to go high between consecutive write cycles. The write enables are placed in a high impedance

state during DMA.

5 IMS T212 engineering data

Table 7.3: Write

T212-20 T212-17
PARAMETER MIN | MAX | MIN | MAX | UNITS | NOTE

Data setup before chip enable high 36 42 ns
Data hold after write 22 30 24 32 ns
Write enable setup before chip enable low | 4 20 4 24 ns 1
Wirite enable hold after chip enable high 17 25 18 27 ns 1
 is for both write enables notMemWrBO-1.

Tstate | 11 | T2 | T3 | T4 | T1 |72

srocClockOut _M/_
AemA0-15 X Address X

10tMemCE N // N\

TDwVEH TEHDw?Z

I: >
emD0-15 D> > < Data

TWELEL TEHWEH
otMemWrBO-1 _{’]/

Figure 7.3; IMS T212 external write cycle

aout S NS NS N\

WrB0-1 >\, Write / Read Read N

CE >/ ¢

15 >< Address X Address X Address X
N

S
N

15 V4

Figure 7.4: IMS T212 typical bus activity for internal memory cycles

7 External memory interface 193

7.7 notMemCE
The active low signal notMemCE is used to enable external memory on both read and write cycles. it must

be used, in conjunction with the write enables notMemWrB0-1, to write data into memory; the write enable
lines only select the byte of memory to be written.

Table 7.4: notMemCE to ProcClockOut skew

T212-20 T212-17
SYMBOL PARAMETER MIN | MAX | MIN | MAX | UNITS | NOTE
TPCHEL | notMemCe falling from ProcClockOut rising 1 5 2 8 ns
TEHPCL | notMemCe rising to ProcClockOut falling 8 14 10 15 ns

ProcClockOut
TPCHEL TEHPCL

notMemCE

Figure 7.5: IMS T212 skew of notMemCE to ProcClockOut

CapPlus
Clocklin I—Il_l CapMinus

(5 MHz) , S
. L e e
LinkOIn Error . e L L
100K ii GND GND M
GND L notMemCE - - 1

. IMS —notMemWrB1

L'"k°°"t_‘:"“—RM T212 |~notMemWrB0

Link1ln — .

Link10ut [AS Link0 MemD12-15 »
Link2In — MemD8-11 atic
Hink20ut ——ca— MemD4-7 RAM
Link3In — — MemDO0-3 7\
Link30ut | " Link? L
Reset

Analyse

MemWait

MemReq ——m8 —] — MemGranted

l MemAO-15

Figure 7.6: IMS T212 application

5 IMS T212 engineering data

Tstate | 11 | 12 | T3 | T4 | T1 T2

‘rocClockOut

lemA1i-15 Address

AemA0(

X
AN
1otMemCE | N _ /
remDO-7 SHS>—X Data

femD8-15 2O
10tMemWrBO N

otMemWrB1 /

Figure 7.7: IMS T212 Least significant byte write in word access mode

3

Tstate | 11 | 12 | 13 | T4 | T4 | T2l T3 | T4 |TH

:Outm
] X Address
| /

X
= " |) _.

- N\ / \ /
D <Data most significant byte>-<

, —— N , : Ve
z»——<0ata most significant byte) 4

N\ ya
/ AN
/742NN NNNNNNNNNNNNN\NN\N\N\

BO

B1

Figure 7.8: IMS T212 Most significant byte write to byte-wide memory

7 External memory interface 195

7.8 MemBAcc

The IMS T212 will, by default, perform word access at even memory locations. Access to byte-wide memory
can be achieved by taking MemBAcc high with the timing shown. Where al! external memory operations are
to byte-wide memory, MemBAcc may be wired permanently high. The state of this signal is latched during
T2.

It MemBAcc is low then a full word will be accessed in one external memory cycle, otherwise the high and
low bytes of the word will be separately accessed during two consecutive cycles. The first (least significant)
byte is accessed at the word address (MemADO is low). The second (most significant) byte is accessed at the
word address +1 (MemAO is high).

With MemBAcc high, the first cycle is identical with a normal word access cycle. However, it will be im-
mediately followed by another memory cycle, which will use MemDO-7 to read or write the second {most
significant) byte of data. During this second cycle notMemWrB1 remains high, both for read and write, and
MemBD8-15 are high impedance. When writing a single byte with MemBAcc high, both the first and second
cycles are performed with notMemWrB0 asserted in the appropriate cycle.

Table 7.5: Byte-wide memory access

ProcClockOut

T212-20 ‘T212-17 i
SYMBOL PARAMETER MIN | MAX | MIN | MAX | UNITS | NOTE
TELBAH | MemBAcc high from chip enable 12 : 15 ns
TELBAL | MemBAcc low from chip enable 26 29 ns
Tstate | 11 | T2 | T3 | T4 | Tt | T2 | T3 | T4 |TH

MemA1-15 X Address >C
MemAO j ' . / - | _
notMemCE ' '% /—_\ /—
MemDO0-7 D——(Data least significant-i.byte >—-<Déta most significant byte>—<
MemD8-15 ZD——<Data most significant byte> . . <

notMemWrBO —_\ /_
notMemwrB1 j / _
MemBacc M&L ANNNNNNNNARRARRRANAS.

TELBAH —#
TELBAL

Figure 7.9: IMS T212 word write to byte-wide memory

196 © 5 IMS T212 engineering data

7.9 MemWait

Taking MemWait high with the timing shown in the diagram will extend the duration of T2 by one processor
cycle TPCLPCL. One wait state comprises the pair W1 and W2. MemWait is sampled near the falling edge of
ProcClockOut during T2, and should not change state in this region. if MemWait is still high when sampled
near the falling edge of ProcClockOut in W2 then another wait period will be inserted. This can continue
indefinitely.

The wait state generator can be a simple digital delay line, synchronised to notMemCE. The Single Wait
State Generator circuit in figure 7.11 can be extended to provide two or more wait states, as shown in
figure 7.12.

_ The Programmable Wait State Generator circuit in figure 7.13 is designed to be interfaced directly to any
memory or peripheral enable signal; 'F' series devices should be employed to ensure minimum delay between
notMemCE and a valid notWaitX input. Only one wait select input line should be low at any one time; for
zero wait states notWait0 must be asserted.

Table 7.6: Memory wait

T212-20 T212-17
SYMBOL PARAMETER MIN | MAX | MIN | MAX | UNITS | NOTE
TELWtH | MemWait asserted after chip enable low 13 13 ns o
TELWIL Wait hold after chip enable low 23 |a+13| 23 | a+13 ns 1

Notes

1 ais wic where w is the number of wait states and ¢ is the toleranced clock period of 49 ns for IMS T212-20,
56 ns for IMS T212-17.

Tstate | T4 | 12 | wi | w2 | T3 fTa 1T [T

ProcClockOut _/—__/—_/v
MemAO-15 X . Address . X

notMemCE yd

TELWILL
TELWtH |4—

N

MemWait __M \j\\\\ | /£ ; ; r/-l
hal

/__

MemDO-15 >__< Data
notMemWrBO-1 N\

Figure 7.10: IMS T212 memory wait timing

emory interface

197

vce
notMemCE S
1/6 74F04 R

GND -6 cP
ProcClockOut 4,_1/2 T4F74

» MemWait

Figure 7.11: Single wait state generator

L N

MemCE

16 74F04 S
R

D Q

GND cP
| 112 74F74
lockOut

cP :
l 12 74F74

Figure 7.12: Extendable wait state génerator

GND

lta I0a b [0b i 10c Hd 10d
notMemCE————1§
74F298
ProcClockQut —e—q P Qa Qb Qc Od
[T 1
n/¢c n/¢c n/c
' n/c nlc
n/c nlc
i A PL TC RC
o—dI5 CP Q0 f—nic
® d 14 74F 74F Q1 {—n/c
d |2 Al p—————1 D1 Q3 ——» MemWait
. d 1 - A2 p———D2 -
—o————d |y g D3 CE UD
- - [1
& GND

Figure 7.13: Programmable wait state generator

120 ! o0 Ilo 1412 higuicolitiy Wdia

7.10 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
For external memory cycles, the IMS T212 samples MemReq during the first high phase of ProcClockOut
after notMemCE goes low. In the absence of an external memory cycle, MemReq is sampled during every
high phase of ProcClockOut. MemA0-15, MemDO0-15, notMemWrB0-1 and notMemCE are tristated before
MemGranted is asserted.

Removal of MemReq is sampled during each high phase of ProcClockOut and MemGranted removed with
the timing shown. Further external bus activity, either external cycles or reflection of internal cycles, will
commence during the next low phase of ProcClockOut. .

Chip enable, write enables, address bus and data bus are in a high impedance state during DMA. External
circuitry must ensure that notMemCE and notMemWrB0-1 do not become active whilst control is being
transferred; it is recommended that a 10K resistor is connected from VCC to each pin. DMA cannot interrupt
an external memory cycle. DMA does not interfere with internal memory cycles in any way, although a program
running in internal memory would have to wait for the end of DMA before accessing external memory. DMA
cannot access internal memory.

Y /e
womeaq —I [L ¢z
MemGranted | L P27z
Reset ———r_) }_l

Bootstrap activity 7/ 7/ m

B Bootstrap sequence.

Figure 7.14; IMS T212 DMA sequence at reset

MemReq 4222229 \ - /7 N\,
. pInternal Memory Cycles
External Memory T112]|13l14 71| T2MW1lwel T3] T4 i &

Interface activity — EMI cycle EMI cycle with wait I 1

MemGranted / \. , _/ N\

notMemwreo1 —_ >———<X X
notMemCE N__/ V" S N~—m
memao-1s > X X
MemDO-15 _@ m

Figure 7.15: IMS T212 operation of MemReq and MemGranted with external and internal memory cycles

eme——n e e s

7 External memory interface 199

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReqis
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockin before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.7: Memory request

T212-20 T212-17 o
SYMBOL PARAMETER MIN | MAX | MIN | MAX | UNITS | NOTE

TMBRHMGH | Memory request response time 85 a 100 a ns 1
TMRLMGL | Memory request end response time g0 100 § 100 | 114 ns
TAZMGH Addr. bus tristate before MemGranted 0 0 ns
TAVMGL Addr. bus active after MemGranted end 4] 0 ns
TDZMGH Data bus tristate before MemGranted 0 0 ns
TEZMGH notMemCE tristate before MemGranted 0 0 ns
TEVMGL notMemCE active after MemGranted end 4] 0 ns
TWEZMGH | Write enabie tristate before MemGranted t] 0 ns
TWEVMGL | Write enable active after MemGranted end (¢] -0 ns-

Notes

1 Maximum response time a depends on whether an external memory cycle is in progress and whether byte
access is active. Maximum time is (2 processor cycles) + (number of wait state cycles) for word access; in byte
access mode this time is doubled.

Tstate e 112013 |14l |

ProcClockOut _/_\N_\

MemReq / Z;‘ | \\\
TMRHMGH : P Iﬂ——-’ TMRLMGL

- N
N
+

__/
' TAZMGH—:I TAVMGL—.I/ e
MemAO-15 J/ ' N\

X
TDZMGH —-:l 4

TEZMGH < TEVMGL —>|/_4-
notMemCE N\
TWEZMGH—q TWEVMGL_’lf+

notMemWrBO-1 J ,/ Q

MemGranted

Figure 7.16: IMS T212 memory request timing

200

8 Events

EventReq and EventAck provide an asyrichronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channe! at any given time. If no process requires an event {o occur
EventAck will never'be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignared until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described on
page 173. Setting a high priority task to wait for an event input is a way of interrupting a transputer program.

Table 8.1: Event

SYMBOL PARAMETER MIN NOM MAX UNITS | NOTE
TVHKH Event request response 0 ns
TKHVL Event request hoid 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns 1
TKLVH Delay before re-assertion of event request 0 ns

Notes

1 ais TPCLPCL (2 periods Tm).

EventReq

EventAck

Figure 8.1: IMS T212 event timing

N

201

9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world, Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received. .

The IMS T212 links support the standard INMOS communication speed of 10 Mbits per second. In addition
they can be used at 5 or 20 Mbits per second. Links are not synchronised with Clockin or ProcClockOut and
are insensitive to their phases. Thus links from independently clocked systems may commumcate providing
only that the clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 miliimetres. For longer distances a matched 100 Ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent. .

Buffers may be used for very long transmissions. If so, their overall propagation delay shouid be stable within
the skew tolerance of the link, although the absolute value of the delay is |mmatenal

Link speeds can be set by LinkSpecial Link0Special and Link123Special The link 0 speed can be set
independently. Table 9.1 shows.uni-directional and bi-directional data rates in Kbytes/second for each link
speed; LinknSpecial is to be read as Link0Special when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1: Speed Settings for Transputer Links

Link Linkn , Khytes/sec
Special Special | Mbits/sec Uni Bi

0 0 - 10 400 800

0 1 - B 200 400

1 0 10 400 800

1 1 20 800 1600

_JH Hlo|112|3|4|5|6| L, Jule

Data | | Ack |

Figure 9.1: IMS T212 link data and acknowledge packets

202 "5 IMS T212 engineering data

Table 9.2: Link
SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TJQr LinkQut rise time 20 ns
TJQf LinkQut fall time 10 ns
TJDr Linkin rise time 20 ns
TJDf Linkin fall time 20 ns
TJQJD Buffered edge delay 0 ns
TJBskew | Variation in TJQJD 20 Mbits/s : 3 ns 1
10 Mbits/s 10 ns 1
5 Mbits/s 30 ns 1
CLIZ Linkin capacitance @ f=1MHz 7 pF
CLL LinkQut load capacitance 50 pF
RM Series resistor for 1001 transmission line 56 ohms
Notes

1 This is-the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

W% ——— === =N == ———

LinkOut
10% === ~f—— -~ = =

Linkin

Figure 9.2: IMS T212 link timing

15V ——— == ——
LinkOut ; . o

Latest TJQJD
Earliest TJQJD

1.5¢ — — — _%__ -
Linkin

TJBskew —Dl '4—

Figure 9.3: IMS T212 buffered link timing

9 Links

203

Transputer family device A

LinkOut

LinkIn

Linkin

LinkOut

Transputer family device B

Figure 9.4: Links directly connected

Transputer family device A

LinkOut

Linkin

/M

Z0 =100 ohms

AM

Linkin

(D Linkout

Zo =100 ohms

Transputer family device B

Figure 9.5: Links connected by transmission line

Transputer family device A

LinkOut

Linkin

Linkin

N
L

—4

buffers

v

d

LinkOut

Transputer family device B

Figure 9.6: Links connected by buffers

rical specifications

actrical characteristics

Table 10.1: Absolute maximum ratings

PARAMETER MIN MAX UNITS | NOTE
)C supply voltage 0 7.0 Y 1,2,3
foltage on input and output pins -0.5 VCC+0.5 \) 1,23
nput current +25 mA 4
Jutput short circuit time (one pin) 1 5 2
storage temperature - -65 150 °C 2
\mbient temperature under bias -65 125 °C 2
Aaximum allowable dissipation 2 W

ges are with respect to GND.

1 stress rating only and functional operation of the device at these or any other conditions beyond those
d in the operating sections of this specification is not implied. Stresses greater than those listed may
ermanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
ect reliability.

vice contains circuilry to protect the inputs against damage caused by high static voltages or electrical
{owever, it is advised that normal precautions be taken to avoid application of any voltage higher than the

2 maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
sel such as VCC or GND.

ut current applies to any input or output pin and applies when the voltage on the pin is between GND
C.

Table 10.2: Operating conditions

PARAMETER MIN MAX UNITS | NOTE
JC supply voltage 4.75 5.25 Vv 1
nput or output voltage 0 VCC Vv 1,2
_oad capacitance on any pin : 50 pF
Dperating temperature range 0 70 °C 3

iges are with respect to GND.

ons beyond the supplies are permitted but not recommended; see DC characteristics.

' rate 400 linear ft/min transverse air flow.

10 Electrical specifications) 205

Table 10.3: DC characteristics

SYMBOL PARAMETER MIN MAX UNITS | NOTE
ViH High level input voitage 2.0 VCC+0.5 v 1,2
VIL Low level input voltage -0.5 0.8 \' 1.2
i Input current @ GND<VI<VCC +10 uA 1,2
VOH Output high voltage @ [OH=2mA VCC-1 v 1,2
VOL Output low voltage @ 10L=4mA 04 v 1,2
i0sS Output short circuit current @ GND<VO<VCC 50 mA 1,2,4
75 mA 1,2,5
10Z Tristate output current @ GND<VO<VCC +10 pA 1,2
PD Power dissipation 700 mwW 2,3
CIN Input capacitance @ f=1MHz 7 pF
coz Output capacitance @ f=1MHz 10 pF
Notes

1 All voltages are with respect to GND.

2 Parameters measured at 4.75V<VCC<5.25V and 0°C<TA<70°C. Input clock frequency = 5MHz.
3 Power dissipation varies with output loading and program execution.

4 Current sourced from non-link outputs.

5 Current sourced from link outputs.

10.2 Equivalent circuits

vCC
m
Load for: R1 R? |Equivalent load:
Output Link outpuls | 1k96 | 47k |1 Schottky TTL input
Other outputs | 970R | - 24k |2 Schottky TTL inputs
30pF I Diodes are 1N916

GND

Figure 10.1: Load circuit for AC measurements

—— e

5 IMS T212 engineering data

. ‘ l :I—I -
est poin 1K2
Output under test _L
30pF
GND e

Figure 10.2: Tristate load circuit for AC measurements

206

10.3 AC timing characteristics

Table 10.4: Input, output edges

SYMBOL PARAMETER MIN MAX UNITS | NOTE

TDr Input rising edges 2 20 ns 1.2

TDf Input falling edges 2 20 ns 1,2

TQr Qutput rising edges ' 25 ns 1

TQf Output falling edges 15 ns 1
Notes

1 Non-link pins; see section on links.

2 Alt inputs except Clockln; see section on Clockin,

90% - — -\~ ————

m%————-T————
TDf —

90% = — = N ——— ——

10%_____%____
TQf —

Figure 10.3: IMS T212 input and output edge timing

o ——s

10 Electrical specifications) 207

30 30 Rise time
Time _] Time |

ns | Rise time ns
20*_”””,,,—4””” 2071 Fall time
Fall time /
10 — 10~
_/] /Skew
L LR @

LU L
40 60 80 100 40 60 80 100

Load Capacitance pF Load Capacitance pF
Link EMI

Notes Figure 10.4: Typical rise/fall times

1 Skew is measured between notMemCE with a standard load (2 Schottky TTL inputs and 30pF) and
notMemcCE with a load of 2 Schottky TTL inputs and varying capacitance.

104 Power rating

Internal power dissipation Py of transputer and peripheral chips depends on VCC, as shown in figure 10.5.

Py is substantially independent of temperature.
Total power dissipation Pp of the chip is
7 Pp = Pyt + Pro
where Pyo is the power dissipation in the input and output pins; this is application aependent. -
Internal working temperature T of the chip is
Ty =Ts+6J4%Pp

where T, is the external ambient temperature in °C and 6J, is the junction-to-ambient thermal resistance in
°C/W. 8J4 for each package is given in the Packaging Specifications section. '

500

Power -
T212A-20
PINT 400~

mwW _
300

rr T T T 7 1T T 17T
44 46 48 50 52 54 5.6

VCC Volts

Figure 10.5: IMS T212 internal power dissipation vs VCC

e

iage specifications

1 grid array package

2 - 3 4 5 6 7 8 9 10
\
Link0 glz‘;f(vee | tink | vink | tink | Link | Link "'1?"’
Special Out in0 Outt out2 In2 in3 GR?D
tink | 5™V Link | Link | Link | Event "'19;" Analyse
Special + outo ini out3 Req
* Special GND *
Boot M
From Rem
ROM A €q
Hold Mem | Mem
GTNOD Index BAcc |Granted
P o
e Mem
D1 IMS T212 GND, CE
>___< 68 Pin Grid Array ‘
M Top View not not
[;am Mem | Mem
: 3 : WrB1WrBO
Mem | Mem
GND A2 AO
Mem Mem Mem
D7 D9 * * A1
Mem Mem Mem Mem Mem Mem Mem Mem
D10 D12 A15 A13 A10 A8 A7 A3
Mem Mem Mem Mem vCce Mem Mem Mem Mem
D11 D13 D15 A4 Al12 A1l A9 A4 /

Figure 11.1; IMS T212 68 pin grid array package pinout

recifications 209

27->|EI<- 109 876 5 4321

™~
| OOEEEEEEE® A
F ! | OORREOOOO® |B
PO® OA® |c
®E ®® |D
K ®® ©® |E
O® O® | F
©E ®©® |G
4| 900 O |H
=y |1 0000000060 |/
PR B == g clolotelelorciolof
¢ B—W c »L e
A > —>l<|;L~ < K >

Figure 11.2: 68 pin grid array package dimensions

Table 11.1: 68 pin grid array package dimensions

Millimetres Inches
NOM TOL NOM TOL Notes

26.924 40.254 1.060 +0.010
17.019 +0.127 0.670 +0.008

2.466 +0.279 0.097 +0.011

4572 +0.127 0.180 +0.005

3.302 +0.127 0.130 +0.005

0.457 +0.051 0.018 +0.002 | Pin diameter

1.270 +0.127 0.050 +0.005 | Flange diameter
22.860 +0.127 0.900 +0.005

2.540 +0.127 0.100 40.005

0.508 0.020 Chamfer

weight is approximately 6.8 grams

able 11.2: 68 pin grid array package junction to ambient thermal resistance

PARAMETER MIN NOM MAX | UNITS | NOTE
400 linear f/min transverse air flow 35 °'C/W

5 IMS T212 engineering data

PLCC J-bend package

-
-538
= .3

2, §80% 2 = w o ¥

E3caodF 323:a3%3%¢

2ed8Slopx=E2s2=2=25§5

cm@lEECERQEEEEEEEE S

QOOOdddA>Jdadddddau

O~ OWSTON~ODOMN O TOAN

WWWWWEWWEWOLIWDLWLWILW0LWWwWw

/ﬂﬂﬂl‘!l’lﬂl‘ll’ll‘ll‘lﬂﬂﬂﬂl’lﬂl’l

oGND 1d : 151 HoldToGND
nROM 20 : 150 EventAck
Reset 30 149 HoldToGND
Error 40 748 Analyse
oGND 50 147 MemBAcc
emD0 60 46 MemWait
emD1 70 IMS T212 145 MemReq)
emD2 8. 68 pin J-Bend 144 MemGranted
emD3 95 Chip Carrier 143 GND
emD4 10E Top View 142 notMemCE
emDs 110 341 notMemWrBO
GND 120 140 notMemWrB1
Mem6 13 139 MemAO
Mem7 1405 138 MemA1
Mem8 150 137 MemA2
emD9 16 [C 136 MemA3
lem10 17 O 135 MemA4

COoOogoOououuuguaduutll

OO~ NMFTUHOSNORNO ~ N

NN NN N NANNANNDOOMOo,m

rNOTOONDTOONT"TOROMNOW

Do5h53x0%2gessTEs

HH

EE=S=S=EE =222

Figure 11.3: IMS T212 68 pin PLCC J-bend package pinout

pecifications

211

X

U oUOOouUauoooToo

Detail A-A

Figure 11.4: 68 pin PLCC J-bend package dimensions

Table 11.3: 68 pin PLCC J-bend package dimensions

MiHlimetres

Inches

NOM TOL

NOM TOL

Notes

25,148 +0.127
24,232 +0.127
3.810 +0.127
0.508 +0.127
1.270 +0.127
0.457 +0.127
0.000 +0.051
0.457 +0.127
0.762 +0.127

0.990 +0.005
0.954 +0.005
0.150 +0.005
0.020 +0.005
0.050 +0.005
0.018 +0.005
0.000 - 40,002
0.018 +0.005
0.030 +0.005

weight is approximately 5.0 grams

e 11.4: 68 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER

MIN

NOM

MAX | UNITS

NOTE

400 linear ft/min transverse air flow

35

°C/W

