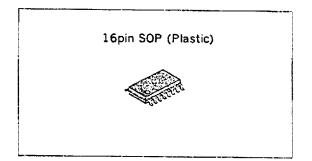
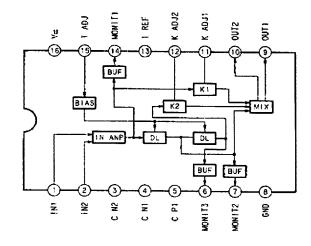
HDD Equalizer (Pulse Slimming) IC


Description

The CXA1445M is an IC for HDD read data equalizers (cosine equalization).


The delay circuit realized through the adoption of an active filter circuit dispenses from the expensive delay line so far in use. Delay time may be changed at will by altering the resistance value.

Features

- The delay circuit obtained through an active filter circuit dispenses from external delay lines. Delay time adjustment is possible by changing the external resistance value.
- Mix ratio adjustment of K1 and K2 is possible by changing the external resistance value.
- 5V single power supply

Block Diagram and Pin Configuration

Absolute Maximum Ratings (Ta=25°C)

• Supply voltage V_{cc} 7 V • Storage temperature T_{stg} -55 to +150 °C

Operating Conditions

• Supply voltage V_{cc} 4.5 to 5.5 V • Operating temperature T_{opr} −20 to +75 °C

Pin Description

No.	Symbol	Voltage	Equivalent circuit	Description			
2	IN1	2.0V	147 16κ 7π 16κ 2κ 16κ 2οο _μ 2οο _μ	Inputs data signals from read amplifier as differential signals through a capacitor. Internal impedance is approx. $16k\Omega$.			
3	CN2	1.7V	^{7/6} GND Vα 1 147 3(4) 4 147	Connects capacitor (0.01 v.E) between this			
4	CN1		SND THE	Connects capacitor (0.01 µF) between this pin and GND to control noise in the circuit			
5	CP1	3 .5V	VIII 147 (5) WHAT 147 GND 777	Connects capacitor (0.01 μ F) between this pin and V_{CC} to control noise in the circuit.			
6	монтз	2.4V	GND 777 GND 777 GND 777 GND 777	Monitor pin output through buffer after input signal passing two delay lines.			
7	MONIT2	2.4V	OND 777	Monitor pin output through buffer after input signal passing the first delay line.			

No.	Symbol	Voltage	Equivalent circuit	Description		
8	GND	ov		GND pin for all circuits		
9	OUT1	3.8V	9\(\frac{1}{2}\) GND \(\frac{1}{2}\) GND \(\frac{1}{2}\)	Signal output pin. Equalized signal is output to pulse detector.		
10	OUT2					
11	K ADJ1	1.2V	Vez 147	A resistor is connected to set K_1 , $K_1 = approx$. 0.25 at $12k\Omega$ (Typ.) Varying the resistance value from ∞ to $4k\Omega$ varies K_1 from 0 to 0.3.		
12	K ADJ2	1.2V	147 12 GND 777	A resistor is connected to set K_2 , K_2 =approx. 0.25 at $12k\Omega$ (Typ.) Varying the resistance value from ∞ to $4k\Omega$ varies K_2 from 0 to 0.3.		
13	I REF	1.2V	147 (3) W	$12k\Omega$ resistor is connected to obtain internal reference current		
14	MONIT1	2.4V	Va 147 147 GNO 777 GNO 777	Output monitor pin of IN AMP		
15	T ADJ	4.0	147 (16)	A resistor is connected to set delay time. Set to 58ns at $10k\Omega$ (Typ.). Varying from 5 to $25k\Omega$ produces a change from 40 to 150ns.		
16	V _{cc}	5V		Connects 5V power supply.		

Electrical Characteristics

\$3 and \$4 taken as "a" side unless specified especially.

 $(Ta = 25^{\circ}C, V_{cc} = 5V)$

Item	Symbol	Conditions	Test point	Min.	Тур.	Max.	Unit
Current consumption	lcc	S1=0N, S2=0N	IM1	8	11	14	mA
Mix ratio accuracy *	К,	$f=200kHz$ $V_{IN}=100mVp\cdot p$ S1=ON, $S2=OFF$	VM1	-10	0	+10	%
wix ratio accuracy *	K ₂	f=200kHz V _{IN} =100mVp-p S1=0FF, S2=0N	VM1	-10	0	+10	%
Delay time accuracy *	Tı	$f=6MHz$ $V_{1N}=100mVp\cdot p$	VM1	-13	0	+13	%
Delay time accuracy #	TB	f=10MHz V _{IN} =100mVp-p	VM1	-22	0	+22	%
Frequency characteristics	FC	-3 dB $V_{IN} = 25$ m V p-p $S1 = OFF, S2 = OFF$	VM1	15			MHz
Gain	GAIN	f=200kHz S1=OFF, S2=OFF	VM1	7.5	9	10.5	dB
Maximum input voltage range	V _{INMAX}	f=3MHz THD≦5% S1=OFF, S2=OFF	VM1	300			mVp∙p
Output noise voltage	V _{NOISE}	S1=OFF, S2=OFF S3=b, S4=b	VM2			630	μV _{rms}

^{*}With the center value of mix ratio and delay time taken as $K_{1,0}$ =0.255 and T=58ns.

The testing methods of mix ratio and delay time can be defined as follows: Equalizer frequency characteristics taken as H (W). To find K_i , suppose $K_2=0$ (S2=OFF), then,

$$|H(W)|^2 = 1 + K_1^2 - 2K_1 \cos \omega \tau$$

Here $K_1 = 0$ (S1 = OFF), 200kHz gain is taken as G_0 (dB). When a certain K_1 is set, 200kHz gain is taken as G_1 (dB). K_1 is calculated through the following formula:

$$K_1 = 1 - 10^{\frac{G_1 - G_6}{20}}$$

 K_2 is solved in a similar way by supposing $K_1=0$ (S1=OFF)

Delay time $T_{\rm L}$ is calculated through the following formula:

S1 and S2 are OFF (where K_1 and K_2 are set to 0), 200kHz and 6MHz gain are taken as G_0 , G_2 (dB). When a certain K_1 and K_2 (S1 and S2=ON, K_1 = K_2) are set, 200kHz and 6MHz gain are taken as G_1 , G_3 (dB). T_{11} is calculated through the following formula:

$$T_{L} = \frac{1}{\omega} \cos^{-1} \left[\frac{1 - 10^{\frac{G_{s}^{2} - G_{s}}{20}}}{2K} \right]$$

K is caluculated through the following formula:

$$K = \frac{1 - 10^{\frac{G' - G}{20}}}{2}$$

As the equalizer frequency characteristics have exceeded the gain peak at f=10MHz, delay time T_H when 10MHz gain are taken as G_3 ', G_2 (dB) is expressed by the following formula:

$$T_{H} = \frac{1}{\omega} \left\{ 2\pi - \cos^{-1} \left[\frac{1 - 10^{\frac{G_{s}' - G_{s}}{20}}}{2K} \right] \right\}$$

The calculating method for this delay time is applied when it is set around 60ns. For setting to any other delay time, the frequency used to test the gain should be changed.

Calculation of delay time

T ADJ1 pin current is taken as I, while delay time is obtained approximately through the following formula:

$$\Delta t = \frac{5.4 \times 10^{-12}}{I}$$

As T ADJ pin voltage is 4.0V, the resistance to be connected to T ADJ pin is taken as R. We have

$$I = \frac{1.0}{R}$$

T ADJ pin voltage changes slightly according to the connected resistance value. However, ignoring this fluctuation, the relation between the delay time and R is given through the following formula:

$$\Delta t = \frac{5.4 \times 10^{-12}}{1.0} \times R$$
$$= 5.4 \times 10^{-12} \times R$$

When $R=10k\Omega$, we have

$$\Delta t = 5.4 \times 10^{-12} \times 10 \times 10^3 = 54 \text{ ns}$$

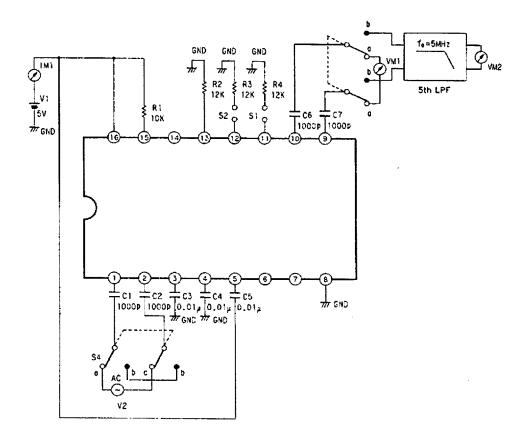
Calculation of mix ratio K1, K2

Mix ratio calculation K₁ generally follows the following formula:

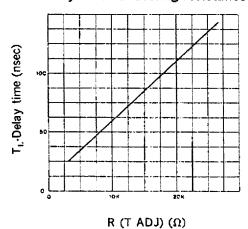
K ADJ1 pin, I REF pin voltage is approx. 1.2V As a $12k\Omega$ is connected to I REF pin I2= 100μ A. K ADJ1 pin voltage changes slightly according to the connected resistance value. However, ignoring this fluctuation, the relation between the mix ratio and R is given through the following formula:

$$11 = \frac{1.2}{R}$$

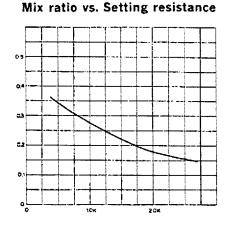
Therefore, the relation between K₁ and R is as follows:


$$K_1 = \frac{0.6}{1.2 + 100 \times 10^{-6} \times R}$$

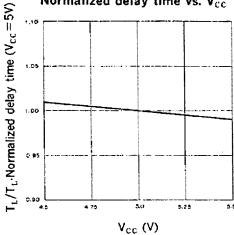
For example, when $R=12k\Omega$, we have


$$K_1 = \frac{0.6}{1.2 + 100 \times 10^{-6} \times 12 \times 10^3} = 0.25$$

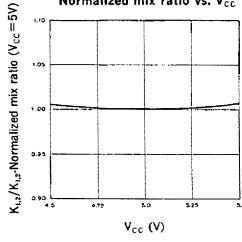
 K_2 is solved in a similar way as being 12 pin K ADJ2 current.


Electrical Characteristics Test Circuit

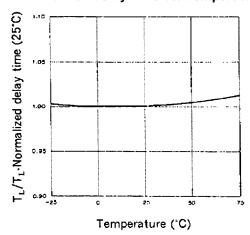
Delay time vs. Setting resistance

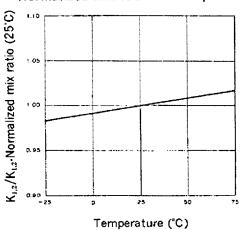


K₁₁₂-Mix ratio (times)

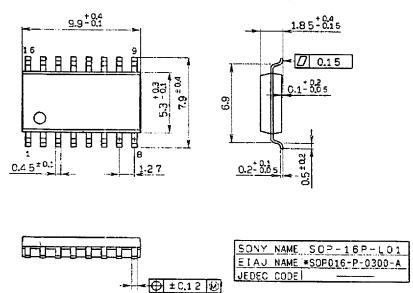


R (K ADJ1,2) (Ω)




Normalized mix ratio vs. V_{cc}

Normalized delay time vs. Temperature



Normalized mix ratio vs. Temperature

Package Outline Unit: mm

16pin SOP (Plastic) 300mil 0.2g

