

Difference among various products of 38C2 Group

Renesas Technology Corporation Renesas LSI Design Corporation Renesas Solutions Corporation

Renesas Technology Corp.

Products effected

- Emulator MCU Standard version, A version M38C29RLFS
- Mask ROM version Standard version M38C24M4-XXXFP/HP, M38C24M6-XXXFP/HP, M38C29MC-XXXFP/HP
- Flash memory version Standard version M38C29FFFP/HP
- Mask ROM version A version M38C24M4A-XXXFP/HP, M38C24M6A-XXXFP/HP, M38C29MCA-XXXFP/HP
- Flash memory version A version M38C29FFAFP/HP

Precaution

- When Mask ROM version, Flash memory version and memory size differ in one group, actual values such as an electrical characteristics, operation margin, A-D conversion accuracy, noise immunity, and noise radiation may differ from the ideal values due to the difference in the manufacturing processes.

 When these products are used switching, perform system evaluation for each product of every after confirming
- When these products are used switching, perform system evaluation for each product of every after confirming product specification.
- This document shows difference, some specifications and standards, not for all.

 Be sure to refer to the most current data sheet as for the latest detailed specification and an electrical characteristics.

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 2 of 12

1.1 Difference among various products of 38C2 Group (1)

	Flash memory version Standard version	Flash memory version A version	Mask ROM version Standard version	Mask ROM version A version					
ROM/RAM size[byte]	60K/2K	60K/2K	16K/640, 24K/640, 48K/2K	16K/640, 24K/640, 48K/2K					
Oscillation circuit constants	The oscillati	The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT will depend on each product.							
Input voltage of Xเท [V]	VIH∶Min. 1.5,Max. Vcc VIL∶Min. 0,Max. 0.4	VIH: Min. 0.8Vcc, Max. Vcc VIL: Min. 0, Max. 0.2Vcc	VIH:Min. 1.5, Max. Vcc VIL:Min. 0, Max. 0.4	VIH: Min. 0.8Vcc, Max. Vcc VIL: Min. 0, Max. 0.2Vcc					
Termination of Xout pin, using externally generated clock	Pull-up	Open	Pull-up	Open					
Sub-clock	External quartz-crystal oscillator or Externally generated clock	External quartz-crystal oscillator	External quartz-crystal oscillator or Externally generated clock	External quartz-crystal oscillator					
Absolute maximum ratings Input voltage (CNVss)	-0.3V to 6.5V	←	-0.3V to Vcc + 0.3V						
Power source current	See 5.section								
Power supply(Vcc) / Main-clock input oscillation frequency	See 6.1. and 6.3.section	See 6.2. and 6.4.section	See 6.1. and 6.3.section	See 6.2. and 6.4.section					
Circuit structure of I/O port P35, P36, P55, P56, P57	See 3.section								
The value of internal pull-up resister (Typ.)	Vcc = 5V 59kΩ	Vcc = 5V 42kΩ	Vcc = 5V 42kΩ	Vcc = 5V 42kΩ					

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 3 of 12

1.2 Difference among various products of 38C2 Group (2)

	Flash memory version Standard version	Flash memory version A version	Mask ROM version Standard version	Mask ROM version A version
Timer X,Y input frequency (Max.) f(CNTR0),f(CNTR1)	2.5<=Vcc<=4.0V: (4 x Vcc - 4)/3 MHz 4.0<=Vcc<=5.5V: 4 MHz	2.5<=Vcc<=4.0V: (Vcc) MHz 4.0<=Vcc<=4.5V: (2 x Vcc - 4) MHz 4.5<=Vcc<=5.5V: 5 MHz	1.8<=Vcc<=2.0V: (5 x Vcc - 8) MHz 2.0<=Vcc<=4.0V: (Vcc) MHz 4.0<=Vcc<=5.5V: 4 MHz	1.8<=Vcc<=2.0V:
Timer X, Timer Y, Timer1, Timer 2, Timer 3 and Timer 4 Clock input frequency (Max.) f(Tclk)	2.5<=Vcc<=4.0V: (8 x Vcc - 8)/3 MHz 4.0<=Vcc<=5.5V: 8 MHz	2.5<=Vcc<=4.0V: (2 x Vcc) MHz 4.0<=Vcc<=4.5V: (4 x Vcc - 8) MHz 4.5<=Vcc<=5.5V: 10 MHz	1.8<=Vcc<=2.0V: (10 x Vcc - 16) MHz 2.0<=Vcc<=4.0V: (2 x Vcc) MHz 4.0<=Vcc<=5.5V: 8 MHz	1.8<=Vcc<=2.0V:
A-D converter (absolute accuracy) 10-bit mode Conditions: VREF=Vcc, f(ADCLK)	5.0V, 4MHz : ± 6LSB 2.5V, 500kHz : ± 5LSB	5.0V, 5MHz : ± 6LSB 4.0V, 4MHz : ± 6LSB 2.5V, 500kHz : ± 5LSB	5.0V, 4MHz : ± 5LSB 2.2V, 500kHz : ± 4LSB	5.0V, 5MHz : ± 5LSB 4.0V, 4MHz : ± 5LSB 2.2V, 500kHz : ± 4LSB
A-D converter (absolute accuracy) 8-bit mode Conditions: VREF=Vcc, f(ADCLK)	5.0V, 4MHz : ± 2LSB 2.5V, 1MHz : ± 2LSB	5.0V, 5MHz : ± 2LSB 4.0V, 4MHz : ± 2LSB 2.5V, 1MHz : ± 2LSB	5.0V, 4MHz : ± 2LSB 2.2V, 1MHz : ± 2LSB	5.0V, 5MHz : ± 2LSB 4.0V, 4MHz : ± 2LSB 2.2V, 1MHz : ± 2LSB

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 4 of 12

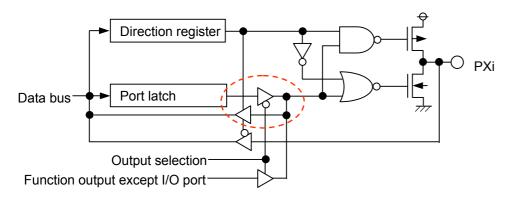
2. Oscillation circuit constants

The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT will depend on each product of Mask ROM version (Standard version, A version) and Flash memory version (Standard version, A version).

So that the product used for mass production obtains the stabilized operation clock on the user system and its condition, contact the resonator manufacturer and select the resonator and oscillation circuit constants. Be careful especially when range of voltage and temperature is wide.

We recommend to design the circuit in consideration of the wiring pattern of the feed-back resistor, the dumping resistor and the load capacity in advance.

We publish the reference-use oscillation circuit parameters in Renesas Technology home page.


http://www.renesas.com/en/38000

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 5 of 12

3. Circuit structure of I/O port

Type A: If data is read from a pin set to output,

the value of the function output except I/O port is read.

Type B: If data is read from a pin set to output, the value of the port latch is read.

Type A

Data bus Port latch	PXi
Output selection Function output except I/O port	

	Standard version	A version
P35/Txout	Type B	Type A
P36/T2OUT	Type B	Type A
P55/TxD1	Type A	Type B
P56/SCLK1	Туре А	Type B
P57/SRDY1	Type A	Type B

Type B

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 6 of 12

4. Difference of Emulator MCU

	Emulator MCU Standard version	Emulator MCU A version		
Oscillation circuit constants	The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT will depend on each product.			
Input voltage of XIN [V]	Vı∺ : Min. 1.5, Max.Vcc Vı∟ : Min. 0 , Max. 0.4	Vıн : Min. 0.8Vcc,Max. Vcc Vı∟ : Min. 0,Max. 0.2Vcc		
Termination of Xout pin, using externally generated clock	Pull-up	Open		
Sub-clock	External quartz-crystal oscillator or Externally generated clock	External quartz-crystal oscillator		
Power supply(Vcc) / Main-clock input oscillation frequency	See MASK ROM version of 6.1. and 6.3.section	See MASK ROM version of 6.2. and 6.4. section		
Circuit dtructure of I/O port P35, P36, P55, P56, P57	See 3.section			
Value of internal pull-up register (Typ.)	Vcc = 5V 59kΩ	Vcc = 5V 42kΩ		
Timer X,Y input frequency (Max.) f(CNTR ₀),f(CNTR ₁)	1.8<=Vcc<=4.0V: (4 x Vcc - 4)/3 MHz 4.0<=Vcc<=5.5V: 4 MHz	1.8<=Vcc<=4.0V : (Vcc) MHz 4.0<=Vcc<=4.5V : (2 x Vcc - 4) MHz 4.5<=Vcc<=5.5V : 5 MHz		
Timer X,Timer Y,Timer1,Timer 2,Timer 3 and Timer 4 Clock input frequency (Max.) f(Tclk)	1.8<=Vcc<=4.0V : (8 x Vcc - 8)/3 MHz 4.0<=Vcc<=5.5V : 8 MHz	1.8<=Vcc<=4.0V : (2 x Vcc) MHz 4.0<=Vcc<=4.5V : (4 x Vcc - 8) MHz 4.5<=Vcc<=5.5V : 10 MHz		

How to discriminate between standard version and A version?

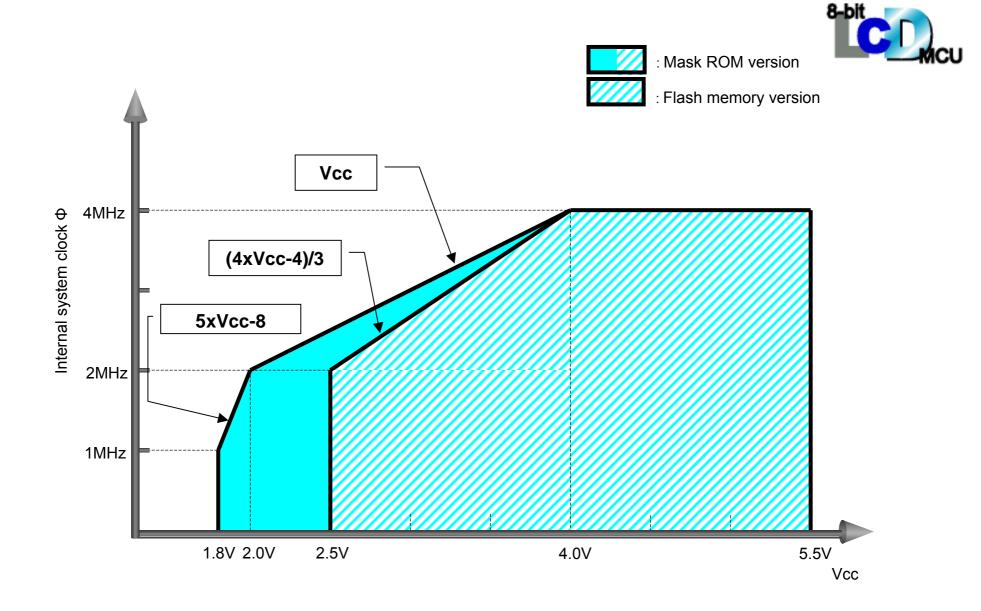
In Emulator MCU M38C29RLFS, standard version's name and A version's name are the same. It is possible to discriminate with the prefix of product number.

Standard version: 0XXXXXX, 1XXXXXX, 2XXXXXX

A version : except the above number

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 7 of 12

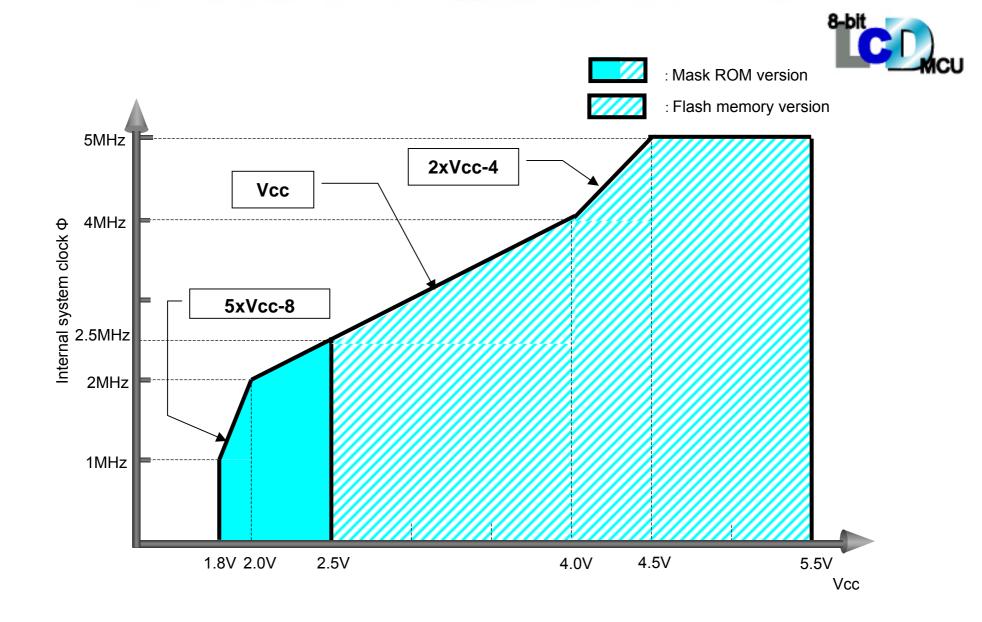
5. Electrical characteristics (Power source current)



Symbol Parameter	Test conditions	Flash memory version Standard version		Flash memory version A version		Mask ROM version Standard version		Mask ROM version A version		Unit	
			Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	
Icc Power source current	Frequency/2 mode, Vcc = 5V, f(XIN) = 10MHz, f(XCIN) = 32.768kHz Output transistors "off", A-D converter in operating	-	-	6.0	8.6	-	1	3.4	5.1	mA	
	Frequency/2 mode, Vcc = 5V, f(XIN) = 8MHz, f(XCIN) = 32.768 kHz Output transistors "off", A-D converter in operating	5.0	7.2	5.0	7.2	2.7	4.2	2.7	4.2	mA	
		Frequency/2 mode, Vcc = 5V, f(XIN) = 8MHz (in WIT state), f(XCIN) = 32.768kHz, Output transistors "off", A-D converter stop	1.0	2.0	1.0	2.0	1.0	2.0	1.0	2.0	mA
		Low-speed mode, Vcc = 5V, Ta <= 55°C, f(XIN) = stopped f(XCIN) = 32.768kHz, Output transistors "off"	150	200	150	200	14	21	14	21	μA
	Low-speed mode, Vcc = 5V, Ta =25°C, f(XIN) = stopped f(XCIN) = 32.768kHz(in WIT state), Output transistors "off"	6	10	6	10	6	10	6	10	μA	
	Low-speed mode, Vcc = 3V, Ta <= 55°C, f(XIN) = stopped f(XCIN) = 32.768kHz, Output transistors "off"	125	165	125	165	7	12	8	13	μA	
		Low-speed mode, Vcc = 3V, Ta =25°C, f(XIN) = stopped f(XCIN) = 32.768kHz(in WIT state), Output transistors "off"	3	6	4	8	3	6	4	8	μA
		All oscillation stopped (in STP state), Ta =25°C, Output transistors "off"	0.1	1.0	0.1	1.0	0.1	1.0	0.1	1.0	μA
		All oscillation stopped (in STP state), Ta =85°C, Output transistors "off"	-	10	_	10	-	10	-	10	μΑ

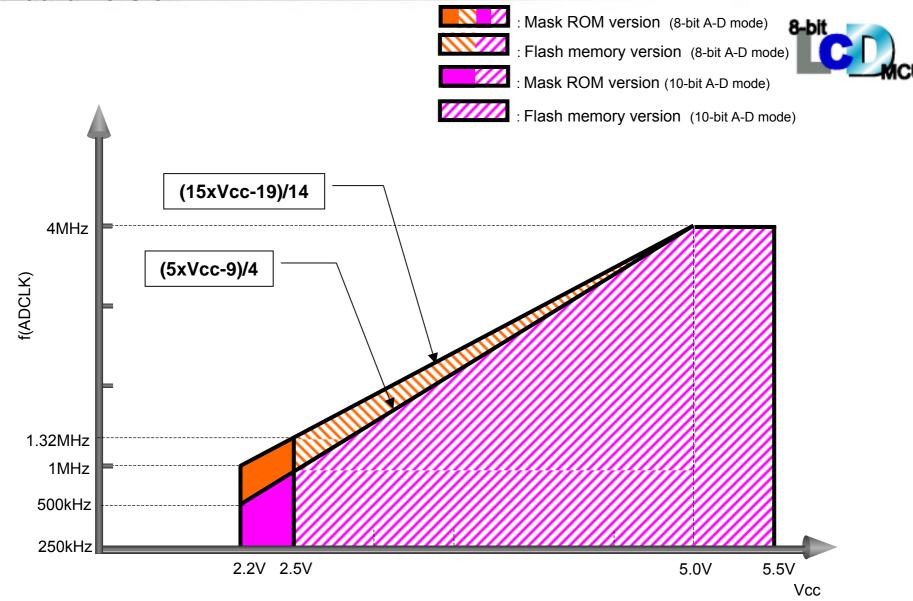
Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 8 of 12

6.1. Internal-clock vs. Vcc (Except A-D converter) Standard version



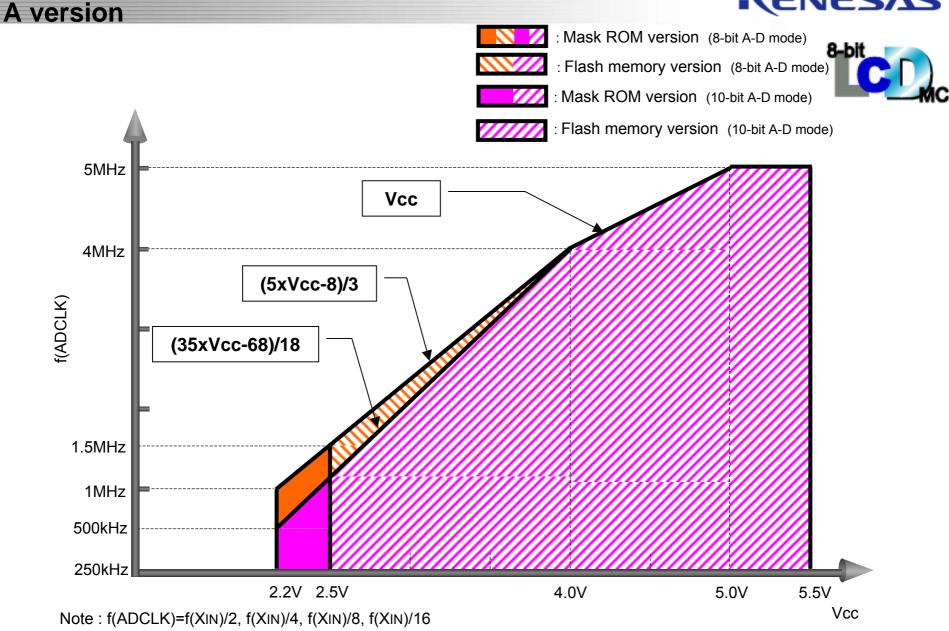
Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 9 of 12

6.2. External-clock vs. Vcc (Except A-D converter) A version



Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 10 of 12

6.3. External-clock vs. Vcc (A-D converter in operating) Standard version



Note: f(ADCLK)=f(XIN)/2, f(XIN)/4, f(XIN)/8, f(XIN)/16

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 11 of 12

6.4. External-clock vs. Vcc (A-D converter in operating)

Code: Difference of 38C2 Group Rev. 1.00 Date: Sep.8, 2003 Page: 12 of 12

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.