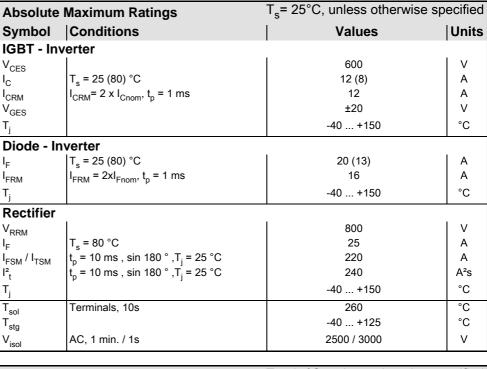

SK 9 DGD 065 ET

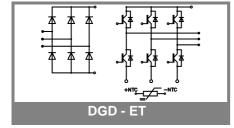
SEMITOP[®] 3

3-phase bridge rectifier + 3-phase bridge inverter

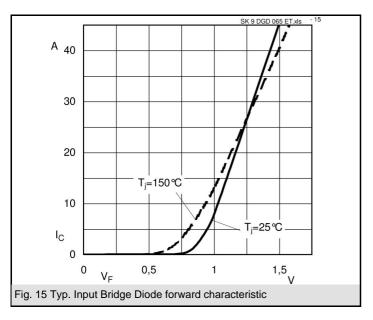
SK 9 DGD 065 ET

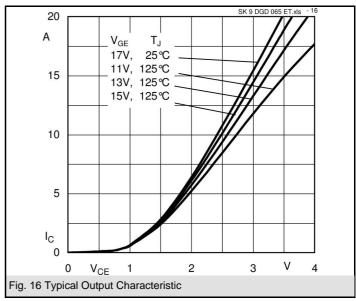

Preliminary Data

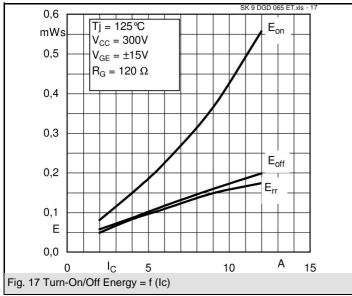
Features

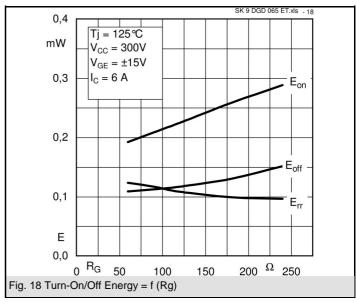

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL Technology FWD
- Integrated NTC temperature sensor

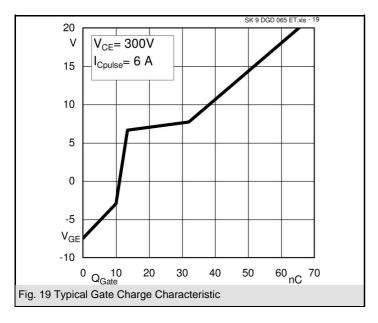
Typical Applications*

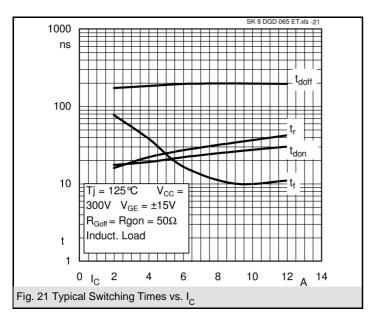

Inverter

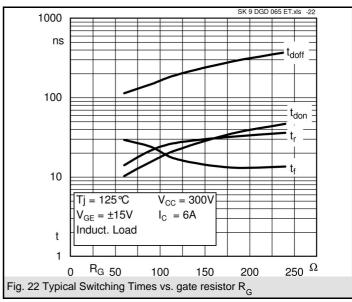


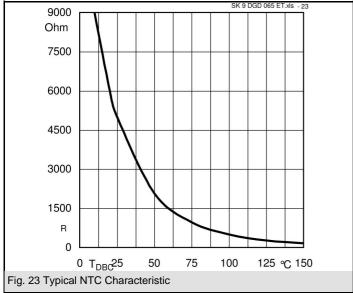

Characteristics		T _s = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT - Inverter					
V_{CEsat}	$I_C = 6 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$		2 (2,2)		V
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5 \text{ mA}$	3	4	5	V
$V_{CE(TO)}$	T _j = 25 °C (125) °C		1,2 (1,1)		V
r _T	T _j = 25 °C (125) °C		133 (183)		mΩ
C _{ies}	$V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		0,35		nF
C _{oes}	$V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		0,4		nF
C _{res}	$V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		0,25		nF
$R_{th(j-s)}$	per IGBT			2,6	K/W
$t_{d(on)}$	under following conditions		20		ns
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		25		ns
t _{d(off)}	$I_C = 6 \text{ A}, T_j = 125 ^{\circ}\text{C}$		145		ns
t _f	$R_{Gon} = R_{Goff} = 120 \Omega$		25		ns
E _{on}	inductive load		0,22		mJ
E _{off}			0,12		mJ
Diode - Inverter					
$V_F = V_{EC}$	I _F = 8 A, T _i = 25(125) °C		1,35		V
$V_{(TO)}$	T _j = 25 °C (125) °C		(8,0)		V
r_T	$T_{j} = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$		(44)		mΩ
$R_{th(j-s)}$	per diode			2,7	K/W
I _{RRM}	under following conditions		4,2		Α
Q_{rr}	I _F = 8 A, V _R = 300 V		0,65		μC
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 125 \text{ °C}$				mJ
	di _{F/dt} = -120 A/µs				
Diode rectifier					
V_{F}	I _F = 20 A, T _j = 25() °C		1,1		V
V _(TO)	T _i = 150 °C		0,85		V
r _T	T _i = 150 °C		15		mΩ
$R_{th(j-s)}$	per diode			2,15	K/W
Temperatur sensor					
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω
Mechanical data					
w			31		g
M_s	Mounting torque	2,3		2,5	Nm

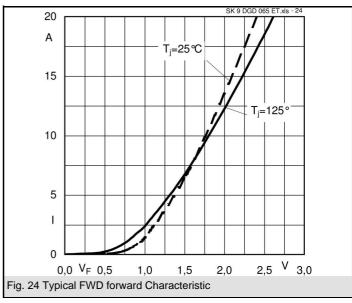


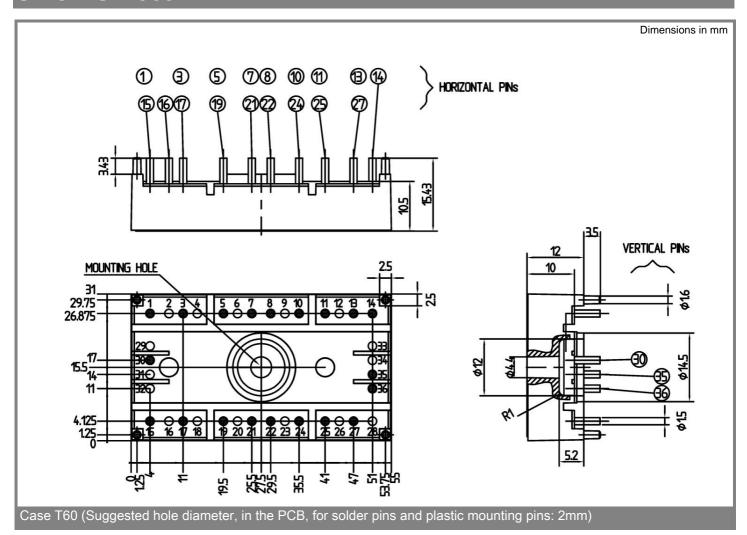

SK 9 DGD 065 ET

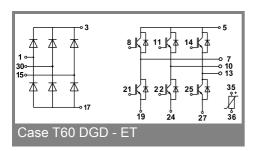









SK 9 DGD 065 ET



This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

4 09-06-2008 DIL © by SEMIKRON