

IT120A MONOLITHIC DUAL NPN TRANSISTOR

Linear Systems replaces discontinued Intersil IT120A

The IT120A is a monolithic pair of NPN transistors mounted in a single P-DIP package. The monolithic dual chip design reduces parasitics and gives better performance while ensuring extremely tight matching. The IT120A is a direct replacement for discontinued Intersil IT120A.

The 8 Pin P-DIP provides ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

IT120A Features:

- High h_{fe} at low current
- Tight matching
- Tight V_{BE} tracking
- Low Output Capacitance

FEATURES								
Direct Replacement for INTERSIL IT120A								
GH h_{FE} @ LOW CURRENT \geq 200 @ 10 μ A								
OUTPUT CAPACITANCE	≤ 2.0pF							
V _{BE} tracking	≤ 3.0μV°C							
ABSOLUTE MAXIMUM RATINGS ¹								
@ 25°C (unless otherwise noted)								
Maximum Temperatures								
Storage Temperature	-65°C to +200°C							
Operating Junction Temperature	-55°C to +150°C							
Maximum Power Dissipation								
Continuous Power Dissipation (One side)	250mW							
Continuous Power Dissipation (Both sides)	500mW							
Linear Derating factor (One side)	2.3mW/°C							
Linear Derating factor (Both sides)	4.3mW/°C							
Maximum Currents								
Collector Current	10mA							

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
$ V_{BE1} - V_{BE2} $	Base Emitter Voltage Differential			1	mV	$I_C = 10 \mu A$, $V_{CE} = 5 V$
$\Delta (V_{BE1} - V_{BE2}) / \Delta T$	Base Emitter Voltage Differential			3	μV/°C	$I_C = 10 \mu A, V_{CE} = 5 V$
	Change with Temperature					T _A = -55°C to +125°C
I _{B1} - I _{B2}	Base Current Differential	-		2.5	nA	$I_C = 10\mu A$, $V_{CE} = 5V$

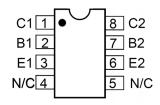
ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

LLLC I MICAL	ATTACTEMENT CO E 25 C (UTILESS OF THE WISC					
SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{CBO}	Collector to Base Voltage	45			V	$I_{c} = 10 \mu A, I_{E} = 0$
BV _{CEO}	Collector to Emitter Voltage	45	-		V	$I_{C} = 10 \mu A, I_{B} = 0$
BV_{EBO}	Emitter-Base Breakdown Voltage	6.2			V	$I_{E} = 10 \mu A$, $I_{C} = 0^{2}$
BV_{CCO}	Collector to Collector Voltage	60			V	$I_{C} = 10 \mu A, I_{E} = 0$
h _{FE}	DC Current Gain	200				$I_C = 10 \mu A, V_{CE} = 5 V$
		225				I _C = 1.0mA, V _{CE} = 5V
V _{CE} (SAT)	Collector Saturation Voltage			0.5	V	$I_{C} = 0.5 \text{mA}, I_{B} = 0.05 \text{mA}$
I _{EBO}	Emitter Cutoff Current			1	nA	$I_{C} = 0, V_{EB} = 3V$
I _{CBO}	Collector Cutoff Current			1	nA	$I_E = 0$, $V_{CB} = 45V$
C _{OBO}	Output Capacitance			2	pF	$I_E = 0, V_{CB} = 5V$
C _{C1C2}	Collector to Collector Capacitance			2	pF	V _{CC} = 0V
I _{C1C2}	Collector to Collector Leakage Current			10	nA	$V_{CC} = \pm 60V$
f_T	Current Gain Bandwidth Product	220			MHz	$I_{C} = 1 \text{mA}, V_{CE} = 5 \text{V}$
NF	Narrow Band Noise Figure			3	dB	$I_C = 100 \mu A$, $V_{CE} = 5V$, $BW = 200 Hz$, $R_G = 10 K\Omega$,
						f = 1KHz

Notes:

- 1. Absolute Maximum ratings are limiting values above which serviceability may be impaired
- 2. The reverse base-to-emitter voltage must never exceed 6.2 volts; the reverse base-to-emitter current must never exceed 10µA.

Available Packages:


IT120A in P-DIP IT120A available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com
Web: www.micross.com/distribution.aspx

P-DIP (Top View)

