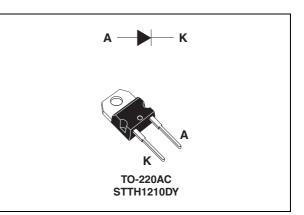


STTH1210-Y

Datasheet - production data

Automotive ultrafast recovery - high voltage diode

Features


- AEC-Q101 qualified
- Ultrafast, soft recovery
- Very low conduction and switching losses
- High frequency and high pulsed current operation
- High reverse voltage capability
- High junction temperature

Description

The high quality design of this diode has produced a device with low leakage current, regularly reproducible characteristics and intrinsic ruggedness. These characteristics make it ideal for heavy duty applications that demand long term reliability, like automotive applications.

These diodes also fit into auxiliary functions such as snubber, bootstrap, and demagnetization applications.

The improved performance in low leakage current, and therefore thermal runaway guard band, is an immediate competitive advantage for this device.

Table 1. Device summary

	-
I _{F(AV)}	12 A
V _{RRM}	1000 V
Тj	175 °C
V _F (typ)	1.30 V
t _{rr} (typ)	48 ns

1/8

This is information on a product in full production.

1 Characteristics

Table 2. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Paran	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage	Repetitive peak reverse voltage			
I _{F(RMS)}	Forward rms current			30	А
I _{F(AV)}	Average forward current, $\delta = 0.5$	Average forward current, $\delta = 0.5$ T _c = 125 °C		12	А
I _{FRM}	Repetitive peak forward current $t_p = 5 \ \mu s$, F = 5 kHz square		120	А	
I _{FSM}	Surge non repetitive forward current	80	А		
T _{stg}	Storage temperature range			-65 to +175	°C
Тj	Operating junction temperature range			-40 to +175	°C

Table 3.Thermal parameters

Symbol	Parameter	Value	Unit
R _{th(j-c)}	Junction to case	1.9	°C/W

Table 4. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _B ⁽¹⁾	Poverce leakage ourrent	T _j = 25 °C	V - V			10	
IR ⁽¹⁾ Reverse leakage current	neverse leakage current	T _j = 125 °C	$V_{R} = V_{RRM}$		3	30	μA
		T _j = 25 °C				2.0	
V _F ⁽²⁾ Forwar	Forward voltage drop	T _j = 100 °C	I _F = 12 A		1.40	1.8	V
		T _j = 150 °C			1.30	1.7	

1. Pulse test: $t_p = 5 \text{ ms}, \delta < 2\%$

2. Pulse test: t_p = 380 µs, δ < 2%

To evaluate the conduction losses use the following equation:

 $P = 1.3 \text{ x } I_{F(AV)} + 0.033 I_{F}^{2}_{(RMS)}$

Table 5.	Dynamic characteristi	cs
----------	-----------------------	----

Symbol	Parameter	Test conditions	Min.	Тур	Max.	Unit
t _{rr} Reverse recovery time		$\label{eq:IF} \begin{array}{l} I_F = 1 \ A, \ dI_F/dt = \text{-50 } A/\mus, \\ V_R = 30 \ V, \ T_j = 25 \ ^\circC \end{array}$		67	90	nc
	$\label{eq:IF} \begin{array}{l} I_F = 1 \mbox{ A, } dI_F/dt = -100 \mbox{ A/}\mu s, \\ V_R = 30 \mbox{ V, } T_j = 25 \mbox{ °C} \end{array}$		48	65	ns	
I _{RM}	Reverse recovery current	$ I_F = 12 \text{ A, } dI_F/dt = -200 \text{ A}/\mu\text{s}, \\ V_R = 600 \text{ V, } T_j = 125 ^\circ\text{C} $		15	20	А
S	Softness factor	$ I_F = 12 \text{ A, } dI_F/dt = -200 \text{ A}/\mu\text{s}, \\ V_R = 600 \text{ V, } T_j = 125 ^\circ\text{C} $		2		
t _{fr}	Forward recovery time	$I_F = 12 \text{ A} \qquad dI_F/dt = 50 \text{ A}/\mu\text{s}$ $V_{FR} = 1.5 \text{ x} \text{ V}_{Fmax}, \text{ T}_j = 25 \text{ °C}$			400	ns
V _{FP}	Forward recovery voltage	$I_F = 12 \text{ A}, \text{ d}I_F/\text{d}t = 50 \text{ A}/\mu\text{s},$ $T_j = 25 ^\circ\text{C}$		5		V

Figure 1. Conduction losses versus average current

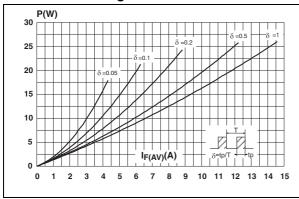
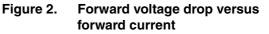



Figure 3. Relative variation of thermal impedance junction to case versus pulse duration

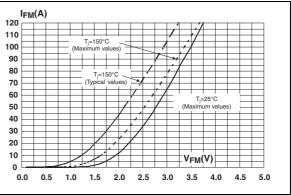
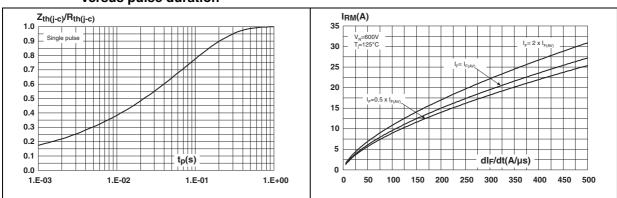
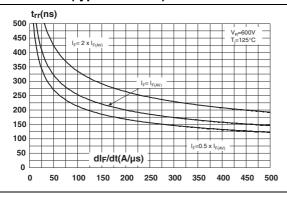



Figure 4. Peak reverse recovery current versus dl_F/dt (typical values)


Doc ID 018921 Rev 1

=0.5 ×

Figure 5. Reverse recovery time versus dl_F/dt Figure 6. (typical values)

Reverse recovery charges versus dl_⊧/dt (typical values)

dlF/dt(A/µs)

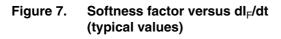
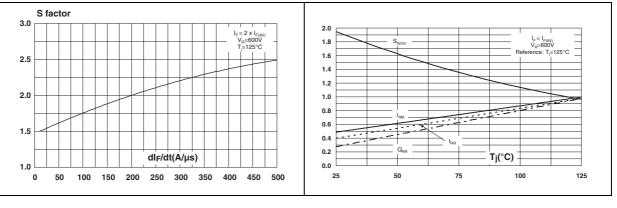



Figure 8. Relative variations of dynamic parameters versus junction temperature

Qrr(µC)

=600V =125°C

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

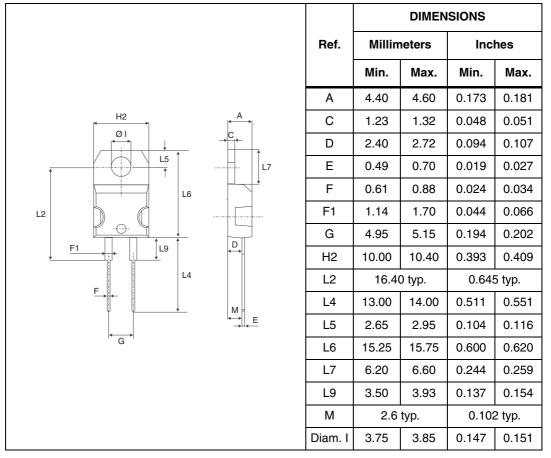
0 50 100 150 200 250 300 350 400 450 500

Figure 9. Transient peak forward voltage versus dl_F/dt (typical values)

Figure 10. Forward recovery time versus dl_F/dt (typical values)

.guio ini ounonon oup	(pF)	. .	, , ,
100		F=1MH	z
		V _{osc} =30mV T _j =25°	
_			
10			
_			++++
		/ _R (V)	
1 - 1	10	100	1000

Figure 11. Junction capacitance versus reverse voltage applied (typical values)



2 Package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

Table 6. T0-220AC dimensions

3 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STTH1210DY	STTH1210DY	TO-220AC	1.86 g	50	Tube

4 Revision history

Table 8.Document revision history

Date	Revision	Changes
24-Oct-2012	1	First issue.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 018921 Rev 1

