Ultra-Low On-Resistance and Compact Bidirectional Battery Switch

General Description
The MAX14634 bidirectional battery switch features reverse blocking capability to isolate the battery from the system. The internal switch features ultra-low $7 \mathrm{~m} \Omega$ (typ) on-resistance and operates from a +2.3 V to +5.5 V input voltage range, making this device ideal as a batterydisconnect switch for high-capacity battery applications. The slew-rate controlled switch is also ideal for a large load capacitor as well as high-current load switching applications.
The device is available in an ultra-small 12-bump (1.3mm $\times 1.7 \mathrm{~mm}, 0.4 \mathrm{~mm}$ pitch) WLP package. The tiny, lowprofile package is suitable for space-limited portable device applications. The device operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

Tablet PC Battery Switches
Smartphone Battery Switches
Battery Isolators

Benefits and Features

\author{

- Provides Efficient System Battery Switch
 \diamond Integrated FET for Bidirectional Blocking
 \diamond Ultra-Low 7m (typ) RON
 \diamond Wide Input Voltage Range: +2.3 V to +5.5 V
 \diamond Low Quiescent Current
 - Saves Space
 \diamond Integrated Pulldown and Logic Buffer Circuits
 $\diamond 12$-Bump, $1.3 \mathrm{~mm} \times 1.7 \mathrm{~mm}, 0.4 \mathrm{~mm}$ Pitch WLP Package
}

Ordering Information appears at end of data sheet.

For related parts and recommended products to use with this part, refer to www.maxim-ic.com/MAX14634.related.

Typical Operating Circuit

Ultra-Low On-Resistance and Compact Bidirectional Battery Switch

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to GND.)	
PWRA, PWRB, $\overline{\text { EN }}$	-0.3V to +6V
Current into PWRA, PWRB	$\pm 5 \mathrm{~A}$
Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
WLP (derate $13.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	1096mW

Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature..................................... $+150^{\circ} \mathrm{C}$
Storage Temperature Range............................ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering Temperature (reflow)
$+260^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

WLP
Junction-to-Ambient Thermal Resistance $\left(\theta_{\mathrm{JA}}\right) \ldots73^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(V_{\text {PWRA }}, V_{\text {PWRB }}=2.3 \mathrm{~V}\right.$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at V_{P}. CPWRB $\left.=0.1 \mu F ; T_{A}=+25^{\circ} \mathrm{C}.\right)($ Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
SUPPLY OPERATION							
Operating Voltage	$V_{\text {PWRA }}$ VPWRB			2.3		5.5	V
Quiescent Current	IPWRA IPWRB	$\mathrm{V}_{\overline{\mathrm{EN}}}=0.4 \mathrm{~V}$, no load				1	$\mu \mathrm{A}$
Transient Supply Current		$\overline{\mathrm{EN}}$ from high to low or low to high			30		$\mu \mathrm{A}$
Shutdown Current	${ }^{\text {I SHDN }}$	$\mathrm{V}_{\overline{E N}}=5.5 \mathrm{~V},\left(\mathrm{~V}_{\text {PWRA }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PWRB}}=\right.$ open) or $\left(\mathrm{V}_{\text {PWRB }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {PWRA }}=\right.$ open $)$				1	$\mu \mathrm{A}$
INTERNAL FET							
On-Resistance Between PWRA and PWRB	R_{ON}	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$	$V_{\text {PWRA }}, V_{\text {PWRRB }}=2.3 \mathrm{~V}$		8	13	$\mathrm{m} \Omega$
			$V_{\text {PWRA }}, V_{\text {PWRR }}=3.3 \mathrm{~V}$		7	10	
$\overline{\text { EN INPUT }}$							
$\overline{\mathrm{EN}}$ Input Logic-High Voltage	V_{IH}			1.6			V
$\overline{\mathrm{EN}}$ Input Logic-Low Voltage	VIL					0.4	V
$\overline{\text { EN }}$ Internal Pulldown Resistor	RPD				500	700	$\mathrm{k} \Omega$
DYNAMIC							
Turn-On Time	ton	Time from $\overline{\mathrm{EN}}$ $\mathrm{V}_{\mathrm{PWRB} / \mathrm{A}}=90 \%$	-to-low signal to of $V_{\text {PWRA/B }}$		3		ms
Turn-Off Time	toff	Time from $\overline{\mathrm{EN}}$ $V_{\text {PWRB/A }}=10 \%$ $R_{\text {LOAD }}=100 \Omega$	-to-high signal to of $\mathrm{V}_{\mathrm{PWRA}} / \mathrm{B}$,		3		ms

Note 2: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over the operating temperature range are guaranteed by design.

MAX14634

Ultra-Low On-Resistance and Compact Bidirectional Battery Switch

Typical Operating Characteristics
($T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX14634

Ultra-Low On-Resistance and Compact Bidirectional Battery Switch

Typical Operating Characteristics (continued)
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Ultra-Low On-Resistance and Compact

 Bidirectional Battery SwitchBump Configuration

TOP VIEW

12-WLP

Bump Description

BUMP	NAME	FUNCTION
A1, A3, B1, B3, C3	PWRB	Power I/O
A2, B2, B4, C2, C4	PWRA	Power I/O
A4	$\overline{\text { EN }}$	Active-Low Enable Input. Drive $\overline{\text { EN }}$ Iow to turn on the switch.
C1	GND	Ground

Ultra-Low On-Resistance and Compact Bidirectional Battery Switch

Detailed Description

The MAX14634 is a bidirectional switch with ultra-low $7 \mathrm{~m} \Omega$ (typ) on-resistance and reverse-current blocking capability. The device has low quiescent current and operates from $\mathrm{a}+2.3 \mathrm{~V}$ to +5.5 V input voltage range, making this device ideal as a battery-disconnect switch for highcapacity battery applications. The slew-rate controlled switch is also ideal for a large load capacitor as well as high-current load switching applications.

Reverse-Current Blocking

The bidirectional FET switch prevents current flowing from either power input to the other when the switch is disabled.

$\overline{E N}$ Input

The switch position is controlled by an $\overline{E N}$ active-low logic input. The switch is on when EN is logic-low and off when $\overline{\mathrm{EN}}$ is logic-high. $\overline{\mathrm{EN}}$ is internally pulled down to ground by RPD.

Ordering Information

PART	TEMP RANGE	TOP MARK	PIN- PACKAGE
MAX14634EWC +T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	ACO	12 WLP

+Denotes a lead(Pb)-free/RoHS-compliant package.
$T=$ Tape and reel
Chip Information
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
12 WLP	$\mathrm{W} 121 \mathrm{~F} 1+1$	$\underline{21-0449}$	Refer to Application Note 1891

Ultra-Low On-Resistance and Compact

 Bidirectional Battery SwitchRevision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$5 / 12$	Initial release	-

Ultra-Low On-Resistance and Compact Bidirectional Battery Switch

