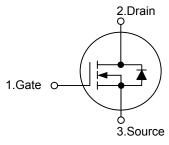


UTC UNISONIC TECHNOLOGIES CO., LTD

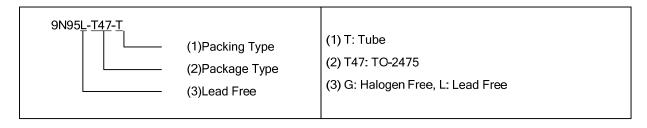
9N95 Power MOSFET

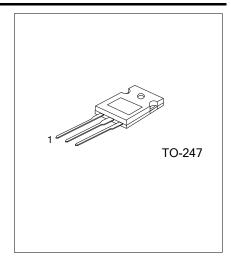
9A, 950V N-CHANNEL POWER MOSFET


DESCRIPTION

The UTC 9N95 uses UTC's advanced proprietary, planar stripe, DMOS technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES


- * $R_{DS(ON)} = 1.4\Omega @V_{GS} = 10 V$
- * Ultra Low Gate Charge (Typical 45 nC)
- * Low Reverse Transfer Capacitance (CRSS = Typical 14 pF)
- * Fast Switching Capability
- * Avalanche Energy Specified
- * Improved dv/dt Capability, High Ruggedness


SYMBOL

ORDERING INFORMATION

Ordering Number		Dackage	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
9N95L-T47-T	9N95G-T47-T	TO-247	G	D	S	Tube	

9N95 Power MOSFET

■ ABSOLUTE MAXIMUM RATING (T_C =25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	950	V
Gate-Source Voltage		V _{GSS}	±30	٧
Continuous Drain Current (T _C = 25°C)		I_{D}	9.0	Α
Pulsed Drain Current (Note 2)		I _{DM}	36	Α
Avalanche Current (Note 2)		I _{AR}	9.0	Α
Avalanche Energy	Single Pulsed(Note 3)	E _{AS}	900	mJ
	Repetitive(Note 2)	E _{AR}	28	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.0	V/ns
Power Dissipation			160	W
Linear Derating Factor above T _C = 25°C		P _D	1.28	W/°C
Junction Temperature		T_J	150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

- Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. Repetitive Rating: Pulse width limited by maximum junction temperature
 - 3. L = 21mH, I_{AS} = 9.0A, V_{DD} = 50V, R_{G} = 25 Ω , Starting T_{J} = 25°C
 - 4. $I_{SD} \le 9.0A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

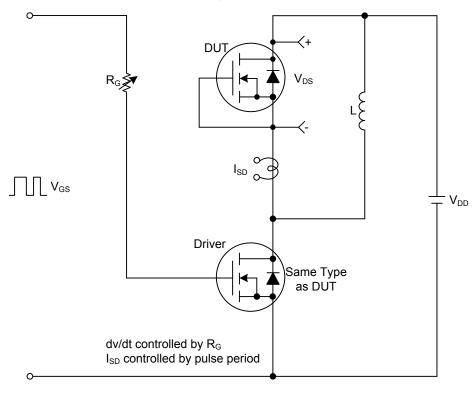
■ THERMAL DATA

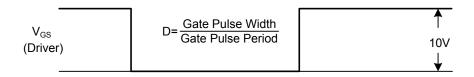
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	50	°C/W
Junction to Case	θ_{JC}	0.78	°C/W

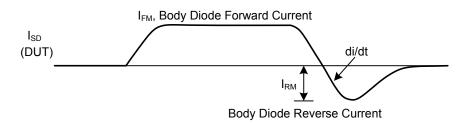
■ ELECTRICAL CHARACTERISTICS (T_J =25°C, unless otherwise specified)

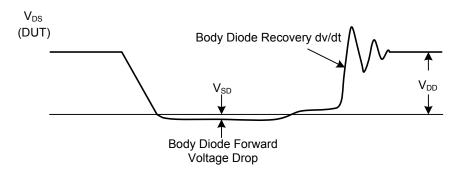
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} = 0 V, I _D = 250μA	950			V	
Drain-Source Leakage Current		I _{DSS}	V _{DS} = 950 V, V _{GS} = 0 V			10	μA	
Gate-Body Leakage Current	Forward	I_{GSSF}	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA	
	Reverse	I_{GSSR}	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$			-100	nA	
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$	I _D =250μA, Referenced to 25°C		0.99		V/°C	
ON CHARACTERISTICS								
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	3.0		5.0	V	
Static Drain-Source On-Resistance		R _{DS(ON)}	$V_{GS} = 10V, I_D = 4.5A$		1.05	1.4	Ω	
DYNAMIC PARAMETERS								
Input Capacitance		C _{ISS}	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz		2100	2730	pF	
Output Capacitance Reverse Transfer Capacitance		Coss			175	230	pF	
		C_{RSS}	1 - 1:0 1011 12		14	18	pF	
SWITCHING CHARACTERIS	TICS				-			
Turn-On Delay Time		t _{D(ON)}	V _{DD} = 475V, I _D =11.0 A,		50	110	ns	
Turn-On Rise Time		t_R			120	250	ns	
Turn-Off Delay Time		t _{D(OFF)}	$R_G = 25\Omega \text{ (Note 1, 2)}$		100	210	ns	
Turn-Off Fall Time		t _F			75	160	ns	
Total Gate Charge		Q_{G}	7001/ 1 44.04		45	58	nC	
Gate-Source Charge		Q_GS	$V_{DS} = 760V, I_D = 11.0A,$		13		nC	
Gate-Drain Charge		Q_{GD}	V_{GS} = 10 V (Note 1,2)		18		nC	

■ ELECTRICAL CHARACTERISTICS(Cont.)

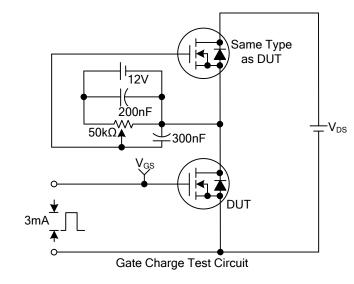

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS								
Drain-Source Diode Forward Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 9.0 \text{ A}$			1.4	V		
Maximum Continuous Drain-Source Diode	Is				9.0	Α		
Forward Current	ŭ							
Maximum Pulsed Drain-Source Diode Forward Current	I _{SM}				36	Α		
Reverse Recovery Time	t _{rr}	$V_{GS} = 0 \text{ V}, I_S = 9.0 \text{ A},$		550		ns		
Reverse Recovery Charge	Q_{RR}	d _{IF} / dt =100 A/µs (Note 1)		6.5		μC		

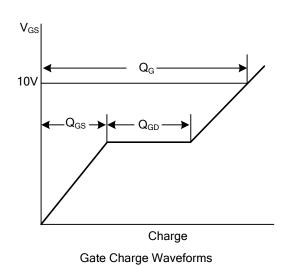

Notes: 1. Pulse Test : Pulse width≤300µs, Duty cycle≤2%

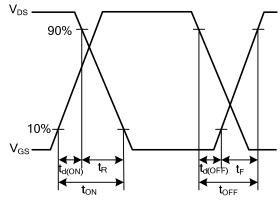

2. Essentially independent of operating temperature


■ TEST CIRCUITS AND WAVEFORMS

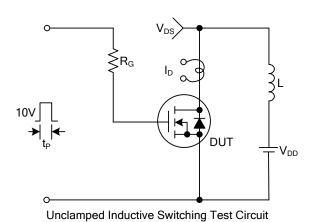
Peak Diode Recovery dv/dt Test Circuit & Waveforms

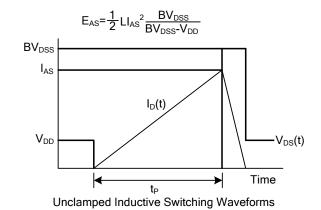


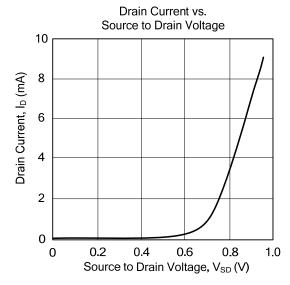


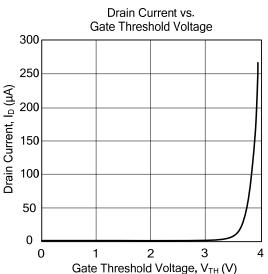


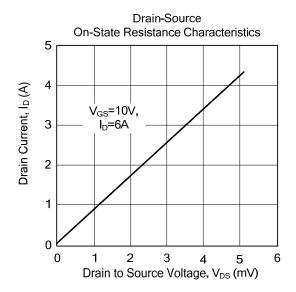
■ TEST CIRCUITS AND WAVEFORMS(Cont.)

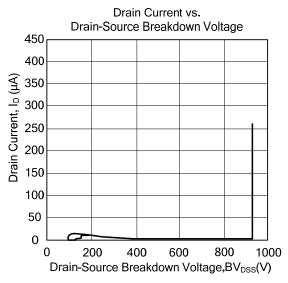



R_G R_D R_D DUT


Resistive Switching Test Circuit







■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.