

Vishay Semiconductors

Phase Control SCR, 8 A

PRODUCT SUMMARY					
V _T at 8 A	< 1.2 V				
I _{TSM}	140 A				
V _{RRM}	800 V				

FEATURES

- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Compliant to RoHS directive 2002/95/EC
- Halogen-free according to IEC 61249-2-21 definition

Designed and qualified for industrial level

APPLICATIONS

- Input rectification and crow-bar (soft start)
- Vishay input diodes, switches and output rectifiers which are available in identical package outlines

DESCRIPTION

The VS-12TTS08SPbF High Voltage Series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125 °C junction temperature.

OUTPUT CURRENT IN TYPICAL APPLICATIONS								
APPLICATIONS SINGLE-PHASE BRIDGE THREE-PHASE BRIDGE UNITS								
Capacitive input filter $T_A = 55 \text{ °C}$, $T_J = 125 \text{ °C}$, common heatsink of 1 °C/W	13.5	17	А					

MAJOR RATINGS AND CHARACTERISTICS									
PARAMETER	TEST CONDITIONS	VALUES	UNITS						
I _{T(AV)}	Sinusoidal waveform	8	٨						
I _{T(RMS)}		12.5	A						
V _{RRM} /V _{DRM}		800	V						
I _{TSM}		140	А						
V _T	8 A, T _J = 25 °C	1.2	V						
dV/dt		150	V/µs						
dl/dt		100	A/µs						
TJ	Range	- 40 to 125	°C						

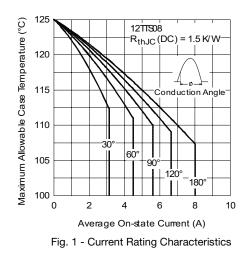
VOLTAGE RATINGS			
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM PEAK DIRECT VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA
VS-12TTS08SPbF	800	800	1.0

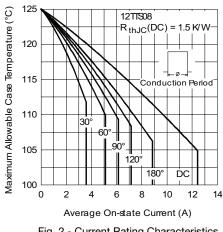
Vishay Semiconductors

Phase Control SCR, 8 A

ABSOLUTE MAXIMUM RATINGS									
PARAMETER	SYMBOL		TEST CONDITIONS	VALUES	UNITS				
Maximum average on-state current	I _{T(AV)}	T 100 °C	190° conduction half sine ways	8					
Maximum RMS on-state current	I _{T(RMS)}	$1_{\rm C} = 108^{-1}{\rm C},$	$T_{C} = 108 \text{ °C}, 180^{\circ} \text{ conduction, half sine wave}$						
Maximum peak one-cycle		10 ms sine pulse, rated V_{RRM} applied, T_J = 125 °C		120	A				
non-repetitive surge current	I _{TSM}	10 ms sine pu	10 ms sine pulse, no voltage reapplied, T_J = 125 °C						
Maximum I ² t for fusing	l ² t	10 ms sine pu	llse, rated V_{RRM} applied, $T_J = 125 \text{ °C}$	72	A ² s				
	1-1	10 ms sine pu	100	A-S					
Maximum $I^2 \sqrt{t}$ for fusing	l²√t	t = 0.1 ms to 7	1000	A²√s					
Maximum on-state voltage drop	V _{TM}	8 A, T _J = 25 °	8 A, T _J = 25 °C						
On-state slope resistance	r _t	T.I = 125 °C		16.2	mΩ				
Threshold voltage	V _{T(TO)}	1j = 125 0		0.87	V				
Maximum reverse and direct leakage current	1	T _J = 25 °C	V _B = Rated V _{BBM} /V _{DBM}	0.05					
Maximum reverse and direct leakage current	I _{RM} /I _{DM}	T _J = 125 °C	VR = nateu VRRM/VDRM	1.0					
Typical holding current	Ι _Η	Anode supply	30	mA					
Maximum latching current	١L	Anode supply	50						
Maximum rate of rise of off-state voltage	dV/dt	T _J = 25 °C	150	V/µs					
Maximum rate of rise of turned-on current	dl/dt			100	A/µs				

TRIGGERING									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS					
Maximum peak gate power	P _{GM}		8.0	W					
Maximum average gate power	P _{G(AV)}		2.0	vv					
Maximum peak positive gate current	+ I _{GM}		1.5	А					
Maximum peak negative gate voltage	- V _{GM}		10	V					
		Anode supply = 6 V, resistive load, T_J = - 65 °C	20						
Maximum required DC gate current to trigger	I _{GT}	Anode supply = 6 V, resistive load, $T_J = 25 \ ^{\circ}C$	15	mA					
		Anode supply = 6 V, resistive load, T_J = 125 °C	10						
		Anode supply = 6 V, resistive load, T_J = - 65 °C	1.2						
Maximum required DC gate voltage to trigger	V _{GT}	Anode supply = 6 V, resistive load, $T_J = 25 \text{ °C}$	1						
		Anode supply = 6 V, resistive load, T_J = 125 °C	0.7	V					
Maximum DC gate voltage not to trigger	V _{GD}	T 105 °C V Dated volue	0.2						
Maximum DC gate current not to trigger	I _{GD}	T _J = 125 °C, V _{DRM} = Rated value	0.1	mA					


SWITCHING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Typical turn-on time	t _{gt}	T _J = 25 °C	0.8					
Typical reverse recovery time	t _{rr}	T _ 125 %	3	μs				
Typical turn-off time	t _q	T _J = 125 °C	100					




Phase Control SCR, 8 A

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS									
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum junction and storage temperature range		T _J , T _{Stg}		- 40 to 125	°C				
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	1.5					
Maximum thermal resistance, junction to ambient		R _{thJA}		62	°C/W				
Typical thermal resistance case to heatsink	,	R _{thCS}	Mounting surface, smooth and greased	0.5					
Approximate weight				2	g				
Approximate weight				0.07	oz.				
Mounting torque	minimum			6 (5)	kgf ⋅ cm				
Mounting torque —	maximum			12 (10)	(lbf · in)				
Marking device			Case style D ² PAK (SMD-220)		S08S				

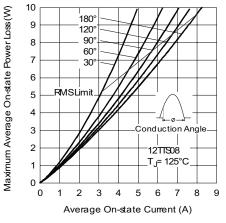
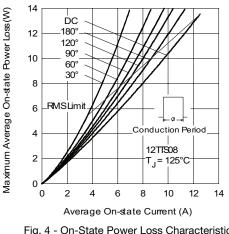



Fig. 3 - On-State Power Loss Characteristics

Vishay Semiconductors

Phase Control SCR, 8 A

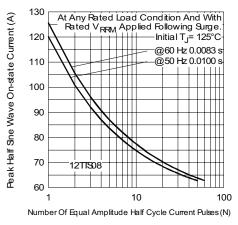
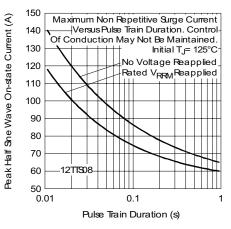



Fig. 5 - Maximum Non-Repetitive Surge Current

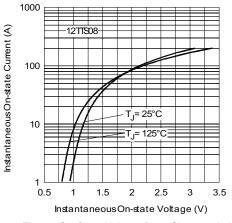
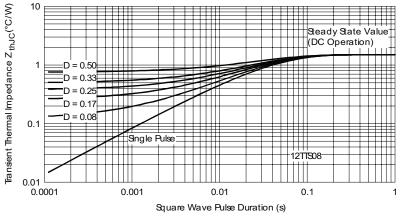



Fig. 7 - On-State Voltage Drop Characteristics

Phase Control SCR, 8 A

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	12	т	т	S	08	S	TRL	PbF		
		2	3	4	5	6	7	8	9		
	1 - HPP product suffix										
	2 - Current rating (12.5 A)										
	3 -	- Circuit configuration:									
		T = Single thyristor									
	4 -	Pac	kage:								
		T =	TO-220	AC							
	5 -	Тур	e of silio	con:							
		S =	Standa	rd recov	ery rect	ifier					
	6 -	Volt	tage rati	ng (08 =	= 800 V)						
	7 -	S =	TO-220	D ² PAK	(SMD-2	220) ve	rsion				
	8 -	- • None = Tube									
		 TRL = Tape and reel (left oriented) 									
		 TRR = Tape and reel (right oriented) 									
	9 -	PbF	= Lead	l (Pb)-fre	ee						

LINKS TO RELATED DOCUMENTS						
Dimensions	www.vishay.com/doc?95046					
Part marking information	www.vishay.com/doc?95054					
Packaging information	www.vishay.com/doc?95032					

Outline Dimensions

Vishay Semiconductors

D²PAK

Conforms to JEDEC outline D²PAK (SMD-220) в Pad layout (2)(3)A 11.00 MIN.-(E) F (0.43)ŧ (3) L1 4 (|(0.38)^{MIN.} (D1) (3) Detail A D 17.90 (0.70) Н 15.00 (0.625) (2) З 0.15)^{0.01} Ľ L2 Ĥ ţ В В 2.32 MIN. (0.08) 2.64 (0.103) 2.41 (0.096) (3)Г 2 x b2 С View A - A 2 x h // ± 0.004 M B ⊕ 0.010 M A M B Base Plating (4) Metal 2 x e Н b1, b3 Gauge plane c1 (4) (c) В 0° to 8° ŧ. Seating Lead assignments plane L3 A1 Lead tip (b, b2) Diodes Section B - B and C - C 1. - Anode (two die)/open (one die) Scale: None 2., 4. - Cathode Detail "A" 3. - Anode

Rotated 90 °CW Scale: 8:1

SYMBOL	MILLIMETERS		INCHES		NOTES		SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES		STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010			E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4		е	2.54	BSC	0.100	BSC	
b2	1.14	1.78	0.045	0.070			Н	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110	
с	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065			L3	0.25	BSC	0.010	BSC	
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208	

Notes

 $^{(1)}\,$ Dimensioning and tolerancing per ASME Y14.5 M-1994 $\,$

(2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body

⁽³⁾ Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

⁽⁵⁾ Datum A and B to be determined at datum plane H

⁽⁶⁾ Controlling dimension: inch

⁽⁷⁾ Outline conforms to JEDEC outline TO-263AB

Document Number: 95046 For technical questions within your region, please contact one of the following: Revision: 31-Mar-11 DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

www.vishay.com

This document is subject to change without notice. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

DIMENSIONS in millimeters and inches

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.