

LSK389 ULTRA LOW NOISE MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Toshiba 2SK389 with LSK389

The 2SK389 / LSK389 is a monolithic matched dual JFET on a single chip

Why use On-Chip Dual JFET instead of 2 single JFETS?

Save Cost

2SK389 / LSK389 removes significant cost for test screening time needed to match loss on 2 individual JFETS and offers ZERO yield loss.

Improve Performance

2SK389 / LSK389 On-Chip loss matching gives closest possible synchronous electrical performance and also offers better matched performance when the chip is subjected to temperature.

2SK389 / LSK389 Applications:

End audio microphone, Audio Amplifier and audio effects box manufacturers

Instrumentation-input stages of various instruments
The acoustic sensor market –sonoboys / antisubmarine, military
personnel and vehicle detectors, sonar makers. Radiation
detectors.

FEATURES						
ULTRA LOW NOISE	TRA LOW NOISE $e_n = 0.9 \text{nV}/\sqrt{\text{Hz}}$ (typ)					
TIGHT MATCHING $ V_{GS1-2} = 20 \text{mV m}$						
HIGH BREAKDOWN VOLTAGE BV _{GSS} = 40V ma						
HIGH GAIN	SH GAIN Yfs = 20mS (typ)					
LOW CAPACITANCE	25pF typ					
IMPROVED SECOND SOURCE REPLACEMENT FOR 2SK389						
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to +150 °C					
Operating Junction Temperature	-55 to +135 °C					
Maximum Power Dissipation						
Continuous Power Dissipation @ +125 °C	;	400mW				
Maximum Currents						
Gate Forward Current		$I_{G(F)} = 10mA$				
Maximum Voltages						
Gate to Source		$V_{GSS} = 40V$				
Gate to Drain	$V_{GDS} = 40V$					

MATCHING CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBO	CHARACTERISTIC	MIN	TYP	MAX	UNIT	CONDITIONS
VGS1 — VGS	Differential Gate to Source Cutoff Voltage			20	mV	V _{DS} = 10V, I _D = 1mA
IDSS1 IDSS2	Gate to Source Saturation Current Ratio	0.9			ı	V _{DS} = 10V, V _{GS} = 0V

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC			TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage		40			V	$V_{DS} = 0$, $I_{D} = 100 \mu A$
V _{GS(OFF)}	Gate to Source Pinch-off Voltage		0.15		2	٧	$V_{DS} = 10V, I_D = 0.1\mu A$
I _{DSS}	Drain to Source Saturation Current LSK	LSK389A	2.6		6.5	mA	V _{DS} = 10V, V _{GS} = 0
		LSK389B	6		12		
		LSK389C	10		20		
I _{GSS}	Gate to Source Leakage Current				200	рА	$V_{GS} = -30V, V_{DS} = 0$
Y _{fs}	Full Conduction Transconductance		8	20		mS	V_{DS} = 10V, V_{GS} = 0, I_{DSS} = 3mA, f = 1kHz
e _n	Noise Voltage			0.9	1.9	nV/√Hz	V_{DS} = 10V, I_{D} = 2mA, f = 1kHz, NBW = 1Hz
en	Noise Voltage			2.5	4	nV/√Hz	$V_{DS} = 10V$, $I_{D} = 2mA$, $f = 10Hz$, NBW = 1Hz
C _{ISS}	Common Source Input Capacitance			25		pF	$V_{DS} = 10V, V_{GS} = 0, f = 1MHz,$
C _{RSS}	Common Source Reverse Transfer Cap.			5.5		pF	$V_{DG} = 10V$, $I_{D} = 0$, $f = 1MHz$,

Available Packages:

2SK389 / LSK389 in SOIC-8 Lead

2SK389 / LSK389 in Thru-hole TO-71 6 Lead

2SK389 / LSK389 Toshiba footprint, SO8 / TO-71 with socket adaptor

2SK389 / LSK389 available as bare die

2SK389 / LSK389 available as wafer form

Please contact Micross for package and die dimensions

