DUAL 4-CHANNEL ANALOGUE MULTIPLEXER/DEMULTIPLEXER The HEF4052B is a dual 4-channel analogue multiplexer/demultiplexer with common channel select logic. Each multiplexer/demultiplexer has four independent inputs/outputs (Y_0 to Y_3) and a common input/output (Z). The common channel select logic includes two address inputs (A_0 and A_1) and an active LOW enable input (\overline{E}). Both multiplexers/demultiplexers contain four bidirectional analogue switches, each with one side connected to an independent input/output (Y_0 to Y_3) and the other side connected to a common input/output (Z). With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by A_0 and A_1 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of A_0 and A_1 . V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (A₀, A₁ and \overline{E}). The V_{DD} to V_{SS} range is 3 to 15 V. The analogue inputs/outputs (Y₀ to Y₃, and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD} - V_{EE}$ may not exceed 15 V. For operation as a digital multiplexer/demultiplexer, VFF is connected to VSS (typically ground). Fig. 2 Pinning diagram. ### **PINNING** Y_{0A} to Y_{3A} independent inputs/outputs Y_{0B} to Y_{3B} independent inputs/outputs A₀, A₁ address inputs E enable input (active LOW)Z_A, Z_B common inputs/outputs HEF4052BP: 16-lead DIL; plastic (SOT-38Z). HEF4052BD: 16-lead DIL; ceramic (cerdip) (SOT-74). HEF4052BT: 16-lead mini-pack; plastic (SO-16; SOT-109A). Fig. 3 Schematic diagram (one switch). ### **FUNCTION TABLE** | inputs | | | channel | | | |-------------|------------------|----------------|--|--|--| | Ē | Α1 | A ₀ | ON | | | | L
L
L | L
H
H
X | LHLHX | Y ₀ A-Z _A ; Y ₀ B-Z _B
Y ₁ A-Z _A ; Y ₁ B-Z _B
Y ₂ A-Z _A ; Y ₂ B-Z _B
Y ₃ A-Z _A ; Y ₃ B-Z _B
none | | | H = HIGH state (the more positive voltage)L = LOW state (the less positive voltage) X = state is immaterial # RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Supply voltage (with reference to VDD) $V_{EE} = -18 \text{ to } + 0.5 \text{ V}$ ### NOTE To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE} . # D.C. CHARACTERISTICS $T_{amb} = 25 \, {}^{\circ}C$ | | V _{DD} -V _{EE} | symbol | typ. n | nax. | | conditions | |---|----------------------------------|-------------------------|----------------|-------|----------------|---| | ON resistance | 5
10
15 | R _{ON} | 80 2 | 245 | ΩΩΩ | V _{is} = 0 to V _{DD} -V _{EE}
see Fig. 6 | | ON resistance | 5
10
15 | R _{ON} | 50 1 | 160 ડ | ΩΩΩ | V _{is} = 0 see Fig. 6 | | ON resistance | 5
10
15 | R _{ON} | 65 2 | 200 5 | Ω | V _{is} = V _{DD} -V _{EE}
see Fig. 6 | | 'Δ' ON resistance
between any two
channels | 5
10
15 | $\Delta R_{ extsf{ON}}$ | 25
10
5 | _ 2 | Ω | V _{is} = 0 to V _{DD} -V _{EE} see Fig. 6 | | OFF-state leakage
current, all
channels OFF | 5
10
15 | lozz | _
_
_ 10 | _ n | nA
nA
nA | \vec{E} at V_{DD} | | OFF-state leakage current, any channel | 5
10
15 | lozy | -
-
- 2 | _ n | nA
nA
nA | E at V _{SS} | Fig. 5 Operating area as a function of the supply voltages. Fig. 6 Test set-up for measuring RON. Fig. 7 Typical R $_{ON}$ as a function of input voltage. I $_{is}$ = 200 μA VSS = VEE = 0 V # A.C. CHARACTERISTICS V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns | | V _{DD}
V | typical formula for P (μW) | where fi = input freq. (MHz) | | |---|----------------------|--|---|--| | Dynamic power
dissipation per
package (P) | 5
10
15 | 1 300 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$
6 100 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$
15 600 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ | f_O = output freq. (MHz)
C_L = load capacitance (pF)
$\Sigma(f_OC_L)$ = sum of outputs
V_{DD} = supply voltage (V) | | # A.C. CHARACTERISTICS $V_{EE} = V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; input transition times $\leq 20 \text{ ns}$ | | V _{DD}
V | symbol | typ. | max. | | | |---|----------------------|------------------|-----------------|-------------------|----------------|--------| | Propagation delays V _{is} → V _{OS} HIGH to LOW | 5
10
15 | ^t PHL | 10
5
5 | 20
10
10 | ns
ns
ns | note 1 | | LOW to HIGH | 5
10
15 | ^t PLH | 10
5
5 | 20
10
10 | ns
ns
ns | note 1 | | A _n → V _{os}
HIGH to LOW | 5
10
15 | t _{PHL} | 150
65
50 | 305
135
100 | ns
ns
ns | note 2 | | LOW to HIGH | 5
10
15 | t _{PLH} | 150
75
50 | 300
150
100 | ns
ns
ns | note 2 | | Output disable times
E → V _{os}
HIGH | 5
10
15 | ^t PHZ | 95
90
90 | 190
180
180 | ns
ns
ns | note 3 | | LOW | 5
10
15 | tPLZ | 100
90
90 | 205
180
180 | ns
ns
ns | note 3 | | Output enable times
E → V _{os}
HIGH | 5
10
15 | ^t PZH | 130
55
45 | 260
115
85 | ns
ns
ns | note 3 | | LOW | 5
10
15 | tPZL | 120
50
35 | 240
100
75 | ns
ns
ns | note 3 | #### A.C. CHARACTERISTICS $V_{FF} = V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; input transition times $\leq 20 \text{ ns}$ | | V _{DD}
V | symbol | typ. | max. | | |--|----------------------|--------|----------------------|-------------------|--------| | Distortion, sine-wave response | 5
10
15 | | 0,25
0,04
0,04 | %
%
% | note 4 | | Crosstalk between any two channels | 5
10
15 | | _
1
 | MHz
MHz
MHz | note 5 | | Crosstalk; enable
or address input
to output | 5
10
15 | | -
50
- | mV
mV
mV | note 6 | | OFF-state
feed-through | 5
10
15 | | -
 1
 - | MHz
MHz
MHz | note 7 | | ON-state frequency response | 5
10
15 | | 13
40
70 | MHz
MHz
MHz | note 8 | #### NOTES Vis is the input voltage at a Y or Z terminal, whichever is assigned as input. Vos is the output voltage at a Y or Z terminal, whichever is assigned as output. - 1. R_L = 10 k Ω to V_{EE}; C_L = 50 pF to V_{EE}; \overline{E} = V_{SS}; V_{is} = V_{DD} (square-wave); see Fig. 8. - 2. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{SS}$; $A_n = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PLH}; $V_{is} = V_{EE}$ and R_L to V_{DD} for t_{PHL}; see Fig. 8. 3. R_L = 10 k Ω ; C_L = 50 pF to V_{EE} ; $\overline{E} = V_{DD}$ (square-wave); - - $V_{is} = V_{DD}$ and R_L to V_{EE} for tpHZ and tpZH; - $V_{is} = V_{EE}$ and R_L to V_{DD} for t_{PLZ} and t_{PZL} ; see Fig. 8. - 4. R_L = 10 k Ω ; C_L = 15 pF; channel ON; V_{is} = ½ V_{DD(p-p)} (sine-wave, symmetrical about ½ V_{DD}); $f_{is} = 1 \text{ kHz}$; see Fig. 9. - 5. $R_L = 1 \text{ k}\Omega$; $V_{is} = \frac{1}{2} \text{ V}_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} \text{ V}_{DD}$); - $20 \log \frac{V_{os}}{V_{is}} = -50 \text{ dB}$; see Fig. 10. - 6. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 15 \text{ pF}$ to V_{EE} ; \overline{E} or $A_n = V_{DD}$ (square-wave); crosstalk is $|V_{os}|$ (peak value); see Fig. 8. - 7. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel OFF; $V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $20 \log \frac{V_{OS}}{V_{is}} = -50 \text{ dB; see Fig. 9.}$ 8. R_L = 1 k Ω ; C_L = 5 pF; channel ON; V_{is} = ½ V_{DD(p-p)} (sine-wave, symmetrical about ½ V_{DD}); - $20 \log \frac{V_{OS}}{V_{is}} = -3 \text{ dB}$; see Fig. 9. Fig. 8. Fig. 9. Fig. 10. # **APPLICATION INFORMATION** Some examples of applications for the HEF4052B are: - Analogue multiplexing and demultiplexing. - Digital multiplexing and demultiplexing. - Signal gating. ### NOTE If break before make is needed, then it is necessary to use the enable input.