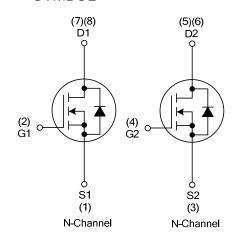

UNISONIC TECHNOLOGIES CO., LTD

10NN15 Preliminary Power MOSFET

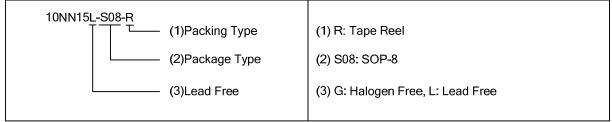
DUAL N-CHANNEL ENHANCEMENT MODE POWER MOSFET

■ DESCRIPTION

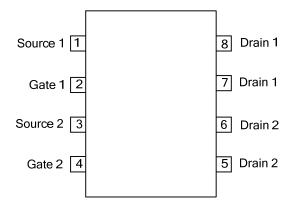

The UTC **10NN15** is a Dual N-channel enhancement mode power MOSFET using UTC's perfect technology to provide customers with fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

FEATURES

- * High switching speed
- * Low Gate Charge
- * Simple Drive Requirement


■ SYMBOL

ORDERING INFORMATION


Ordering Number		Dookogo	Pin Assignment					Dealing		
Lead Free	Halogen Free	Package	1	2	3	4	5, 6	7, 8	Packing	
10NN15L-S08-R	10NN15G-S08-R	SOP-8	S1	G1	S2	G2	D2	D1	Tape Reel	

Note: Pin Assignment: G: Gate D: Drain S: Source

www.unisonic.com.tw 1 of 4

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	150	V
Gate-Source Voltage		V_{GSS}	±20	V
Danie Oceanna	Continuous (Note 3)	I _D	3	Α
Drain Current	Pulsed (Note 2)	I _{DM}	12	Α
Power Dissipation		P _D	2	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T_{STG}	-55~+150	°C

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Pulse width limited by Max. junction temperature.
- 3. Surface mounted on 1in2 copper pad of FR4 board, t≤10sec; 135°C/W when mounted on Min. copper pad.

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient (Note 3)	θ_{JA}	62.5	°C/W

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS					-		
Drain-Source Breakdown Voltage	е	BV_DSS	I_D =250 μ A, V_{GS} =0 V	150			V
Drain-Source Leakage Current	-	I_{DSS}	V _{DS} =150V, V _{GS} =0V			10	μΑ
Gate- Source Leakage Current	Forward	Lana	V_{GS} =+20V, V_{DS} =0V			+100	nA
	Reverse	I _{GSS}	V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$			4	V
Static Drain-Source On-State Re	sistance	R _{DS(ON)}	V _{GS} =10V, I _D =3A			400	mΩ
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			420	672	pF
Output Capacitance		Coss	V_{GS} =0V, V_{DS} =25V, f=1.0MHz		60		pF
Reverse Transfer Capacitance		C _{RSS}			40		pF
SWITCHING PARAMETERS						•	
Total Gate Charge		Q_{G}	V _{GS} =10V, V _{DS} =120V, I _D =3A (Note 1, 2)		10	16	nC
Gate to Source Charge		Q_GS			2		nC
Gate to Drain Charge		Q_{GD}	(14010-1, 2)		4		nC
Turn-ON Delay Time		$t_{D(ON)}$			6.5		ns
Rise Time		t _R	V_{DS} =75V, V_{GS} =10V, I_{D} =3A,		7		ns
Turn-OFF Delay Time		t _{D(OFF)}	R _G =3.3Ω (Note 1, 2)		14		ns
Fall-Time		t_{F}			35		ns
SOURCE- DRAIN DIODE RATIN	NGS AND	CHARACTERI	STICS				
Drain-Source Diode Forward Voltage		V_{SD}	I _S =3A, V _{GS} =0V			1.3	V
Body Diode Reverse Recovery Time		t _{RR}	-I _S =3A, V _{GS} =0V, dI _F /dt=100A/μs		40		ns
Body Diode Reverse Recovery Charge		Q_{RR}			75		μC

Note: 1. Pulse width $\leq 300\mu s$, duty cycle $\leq 2\%$.

2. Essentially independent of operating temperature.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

