-3.3V / -5V Triple ECL Input to PECL Output Translator

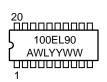
The MC100EL90 is a triple ECL to PECL translator. The device receives either -3.3~V or -5~V differential ECL signals, determined by the $V_{\rm EE}$ supply level, and translates them to standard +5~V differential PECL output signals.

To accomplish the level translation, the EL90 requires three power rails. The V_{CC} supply should be connected to the positive supply, and the V_{EE} pin should be connected to the negative power supply. The GND pins, as expected, are connected to the system ground plane. Both V_{EE} and V_{CC} should be bypassed to ground via 0.01 μF capacitors.

Under open input conditions, the \overline{D} input will be biased at $V_{EE}/2$ and the D input will be pulled to V_{EE} . This condition will force the Q output to a LOW, ensuring stability.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

- 500 ps Propagation Delays
- ESD Protection: >2 KV HBM, >200 V MM
- The 100 Series Contains Temperature Compensation
- Operating Range: V_{CC}= 4.75 V to 5.25 V;
 V_{EE}= -3.0 V to -5.5 V; GND= 0 V
- Internal Input Pulldown Resistors
- Q Output will Default LOW with Inputs Open or at V_{EE}
- Moisture Sensitivity Level 1
 For Additional Information, see Application Note AND8003/D
- Flammability Rating: UL-94 code V-0 @ 1/8", Oxygen Index 28 to 34
- Transistor Count = 261 devices



ON Semiconductor™

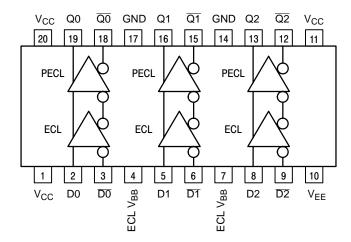
http://onsemi.com

MARKING DIAGRAM*

A = Assembly Location

WL = Wafer Lot

YY = Year


WW = Work Week

*For additional information, see Application Note AND8002/D

ORDERING INFORMATION

Device	Package	Shipping
MC100EL90DW	SO-20	38 Units/Rail
MC100EL90DWR2	SO-20	1000 Units/Reel

Logic Diagram and Pinout: 20-Lead SOIC (Top View)

PIN DESCRIPTION

PIN	FUNCTION
Dn, Dn	ECL Inputs
Qn, Qn	PECL Outputs
ECL V _{BB}	ECL Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
GND	Ground
1	

Warning: All V_{CC} , V_{EE} , and GND pins must be externally connected to Power Supply to guarantee proper operation.

MAXIMUM RATINGS (Note 1.)

Symbol	Parameter	Condition 1	Condition 2	Rating	Units
V _{CC}	PECL Power Supply	GND = 0 V		8 to 0	V
V _{EE}	NECL Power Supply	GND = 0 V		–8 to 0	V
VI	NECL Input Voltage	GND = 0 V	$V_I \ge V_{EE}$	–6 to 0	٧
l _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	ECL V _{BB} Sink/Source			± 0.5	mA
TA	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	0 LFPM 500 LFPM	20 SOIC 20 SOIC	90 60	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction to Case)	std bd	20 SOIC	30 to 35	°C/W
T _{sol}	Wave Solder	<2 to 3 sec @ 248°C		265	°C

^{1.} Maximum Ratings are those values beyond which device damage may occur.

 $^{^{\}ast}$ All V_{CC} pins are tied together on the die.

NECL INPUT DC CHARACTERISTICS V_{CC}= 5.0 V; V_{EE}= -5.0 V; GND= 0 V (Note 1.)

		−40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	V _{EE} Power Supply Current			8.0		6.0	8.0			8.0	mA
V _{IH}	Input HIGH Voltage (Single Ended)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
ECL V _{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
VIHCMR	Input HIGH Voltage Common Mode Range (Differential) (Note 2.) Vpp < 500 mV Vpp ≧ 500 mV	V _{EE} +1.3 VEE+1.5		-0.4 -0.4	V _{EE} +1.2 VEE+1.4		-0.4 -0.4	V _{EE} +1.2 VEE+1.4		-0.4 -0.4	> >
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			0.5			μΑ

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 1. Input parameters vary 1:1 with GND. V_{EE} can vary -3.0 V / -5.5 V.
- 2. V_{IHCMR} min varies 1:1 with V_{EE} . V_{IHCMR} max varies 1:1 with GND.

PECL OUTPUT DC CHARACTERISTICS V_{CC} = 5.0 V; V_{EE} = -5.0 V; GND= 0 V (Note 1.)

		–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Icc	V _{CC} Power Supply Current			24		20	24			26	mA
V _{OH}	Output HIGH Voltage (Note 2.)	3915	3995	4120	3975	4045	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 2.)	3170	3305	3445	3190	3295	3380	3190	3295	3380	mV

NOTE: Devices are designed to meet the DC specifications shown in the above table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 lfpm is maintained.

- 1. Output parameters vary 1:1 with V_{CC}. V_{CC} can vary \pm 0.5 V.
- 2. Outputs are terminated through a 50 ohm resistor to $V_{\mbox{\scriptsize CC}}$ -2 volts.

AC CHARACTERISTICS $\rm V_{CC} = 4.5~V$ to 5.5 V; $\rm V_{EE} = -3.0~V$ to -5.5~V; GND= 0 V

		–40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		560			650			700		MHz
t _{PLH} t _{PHL}	Propagation Delay Differential D to Q S.E.	390 340		590 640	420 370		620 670	460 410		660 710	ps
t _{SKEW}	Skew Output-to-Output (Note 1) Part-to-Part (Differential) (Note 1) Duty Cycle (Differential) (Note 2)		20 25	100 200		20 25	100 200		20 25	100 200	ps
t _{JITTER}	Cycle-to-Cycle Jitter		TBD			TBD			TBD		ps
V_{PP}	Input Swing (Note 3)	150		1000	150		1000	150		1000	mV
t _r	Output Rise/Fall Times Q (20% – 80%)	230		500	230		500	230		500	ps

- 1. Skews are valid across specified voltage range, part-to-part skew is for a given temperature.
- 2. Duty cycle skew is the difference between a TPLH and TPHL propagation delay through a device.
- 3. V_{PP}(min) is the minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40.

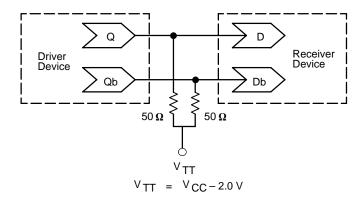


Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020 – Termination of ECL Logic Devices.)

Resource Reference of Application Notes

AN1404 – ECLinPS Circuit Performance at Non–Standard V_{IH} Levels

AN1405 – ECL Clock Distribution Techniques

AN1406 – Designing with PECL (ECL at +5.0 V)

AN1503 - ECLinPS I/O SPICE Modeling Kit

AN1504 – Metastability and the ECLinPS Family

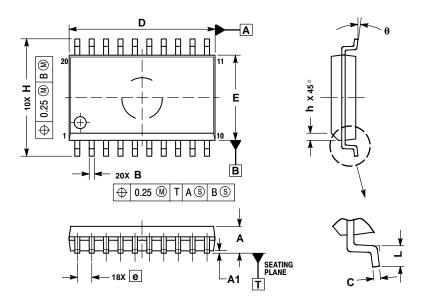
AN1560 _ Low Voltage ECLinPS SPICE Modeling Kit

AN1568 - Interfacing Between LVDS and ECL

AN1596 – ECLinPS Lite Translator ELT Family SPICE I/O Model Kit

AN1650 – Using Wire–OR Ties in ECLinPS Designs

AN1672 – The ECL Translator Guide


AND8001 - Odd Number Counters Design

AND8002 - Marking and Date Codes

AND8020 - Termination of ECL Logic Devices

PACKAGE DIMENSIONS

SO-20 **DW SUFFIX** PLASTIC SOIC PACKAGE CASE 751D-05 ISSUE F

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS								
DIM	MIN	MAX							
Α	2.35	2.65							
A1	0.10	0.25							
В	0.35	0.49							
С	0.23	0.32							
D	12.65	12.95							
E	7.40	7.60							
е	1.27	BSC							
Н	10.05	10.55							
h	0.25	0.75							
L	0.50	0.90							
A	0 °	7 °							

Notes

Notes

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.