

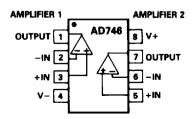
Dual Precision, 500 ns Settling, BiFET Op Amp

AD746

FEATURES
AC PERFORMANCE
500 ns Settling to 0.01% for 10 V Step
75 V/µs Slew Rate
0.0001% Total Harmonic Distortion (THD)
13 MHz Gain Bandwidth
Internal Compensation for Gains of +2 or Greater

DC PERFORMANCE
0.5 mV max Offset Voltage (AD746B)
10 μV/°C max Drift (AD746B)
175 V/mV min Open Loop Gain (AD746B)
2 μV p-p Noise, 0.1 Hz to 10 Hz
Available in Plastic Mini-DIP, Cerdip and Surface Mount Packages
Available in Tape and Reel in Accordance with EIA-481A Standard
MIL-STD-883B Processing also Available
Single Version: AD744

APPLICATIONS


Dual Output Buffers for 12- and 14-Bit DACs

Input Buffers for Precision ADCs, Wideband

Preamplifiers and Low Distortion Audio Circuitry

CONNECTION DIAGRAM

Plastic Mini-DIP (N)
Cerdip (Q) and
Plastic SOIC (R) Packages

PRODUCT DESCRIPTION

The AD746 is a dual operational amplifier, consisting of two AD744 BiFET op amps on a single chip. These precision monolithic op amps offer excellent dc characteristics plus rapid settling times, high slew rates and ample bandwidths. In addition, the AD746 provides the close matching ac and dc characteristics inherent to amplifiers sharing the same monolithic die.

The single pole response of the AD746 provides fast settling: 500 ns to 0.01%. This feature, combined with its high dc precision, makes it suitable for use as a buffer amplifier for 12-or 14-bit DACs and ADCs. Furthermore, the AD746's low total harmonic distortion (THD) level of 0.0001% and very close matching ac characteristics make it an ideal amplifier for many demanding audio applications.

The AD746 is internally compensated for stable operation as a unity gain inverter or as a noninverting amplifier with a gain of 2 or greater. It is available in four performance grades. The AD746J is rated over the commercial temperature range of 0°C to +70°C. The AD746A and AD746B are rated over the industrial temperature range of -40°C to +85°C. The AD746S is rated over the military temperature range of -55°C to +125°C and is available processed to MIL-STD-883B, Rev. C.

The AD746 is available in three 8-pin packages: plastic mini-DIP, hermetic cerdip and surface mount (SOIC).

PRODUCT HIGHLIGHTS

- The AD746 offers exceptional dynamic response for high speed data acquisition systems. It settles to 0.01% in 500 ns and has a 100% tested minimum slew rate of 50 V/μs (AD746B).
- Outstanding dc precision is provided by a combination of Analog Devices' advanced processing technology, laser wafer drift trimming and well-matched ion-implanted JFETs. Input offset voltage, input bias current and input offset current are specified in the warmed-up condition and are 100% tested.
- Differential and multichannel systems will benefit from the AD746's very close matching of ac characteristics. Input offset voltage specs are fully tested and guaranteed to a maximum of 0.5 mV (AD746B).
- 4. The AD746 has very close, guaranteed matching of input bias current between its two amplifiers.
- 5. Unity gain stable version AD712 also available.

AD746—SPECIFICATIONS (@ +25°C and ±15 V dc, unless otherwise noted)

INPUT OFFSET VOLTAGE Initial Offset Offset Vs. Temperature vs. Supply (PSRR) Vs. Supply (PSR) Vs. Supply (PSRR) Vs. Supply (PSRR) Vs. Supply (PSRR) Vs. Supply (PSRR) Vs. Supply (PSR) Vs. Supply (Ps. Suppl	V V	80 80 80	0.3 12 95 15 110 2.5; 1455 1.0; 0.6 6 120 90 0.5) /7 /7 /5 /7 /3 /7 /7 /7 /7 /7 /7 /7 /7 /7 /7 /7 /7 /7	250 20 250 5.7/16 350 125 2.8/8 1.5 2.0 20 125	84 84	0.25 5 100 15 110 7 145 45 3 0.3 120 90 13 75 600 0.5	0.5 0.7 10 150 9.6 200 75 4.8 0.5 0.7 20 75	80 80 80	0.3 12 95 15 110 113 1145 45 45 45 120 90	1.0 1.5 20 250 256 350 125 128 1.0 1.5 20 125	mV mV µV/°C dB dB µV/month pA nA pA nA mV mV µV/°C pA dB dB
Either Input Either Input Either Input $(W_{LM} = 0 \text{ V})$ Either Input Offset Current Offset Current Offset Current Offset Current Offset Voltage Input Impedance Input Impedance Input Impedance Input Voltage Range Input Impedance Input Voltage Range Input Impedance Input Imput Impedance Input Impedance In	p-p		2.5/ 145 45 1.0/ 0.6 120/ 90 13 75 600 0.5	(7 5 /3	5.7/16 350 125 2.8/8 1.5 2.0 20 125		7 145 45 3 0.3 120 90	9.6 200 75 4.8 0.5 0.7 20 75		113 145 45 45 0.6 120 90	256 350 125 128 1.0 1.5 20	nA pA pA nA mV mV μV/°C pA dB dB
Input Offset Voltage Drift Input Bias Current Crosstalk	р-р		120 90 13 75 600 0.5)	2.0 20 125		120 90 13 75 600	0.7 20 75		120 90	1.5 20	mV μV/°C pA dB dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	р-р		75 600 0.5		0.75		75 600	N 75		75		
							0.0001	0.73		0.0001	0.75	V/µs kHz µs
				× 10 ¹¹ × 10 ¹¹			2.5 × 10 2.5 × 10			2.5 × 10 ¹¹ 5.5 2.5 × 10 ¹¹ 5.5		ΩpF ΩpF
f = 10 Hz f = 100 Hz f = 1 kHz	V AAX V	-11 78 76 72 70	± 20 +14 88 84 84 84	 1.5, √1	l.5 +13	-11 82 80 78 74	±20 +14.5, 88 84 84	11.5 +13	-11 78 76 72 70	±20 +14.5, 11.5 88 84 84 84	+13	V V V dB dB dB
1 = 10 KHZ	[2 45 22 18 16				2 45 22 18 16			2 45 22 18 16		µV p-p nV/√Hz nV/√Hz nV/√Hz nV/√Hz
INPUT CURRENT NOISE f = 1 kHz			0.0)1			0.01			0.01		pA/√Hz
OPEN LOOP GAIN $ \begin{array}{c} V_{O} = \pm 10 \text{ V} \\ R_{LOAD} \geq 2 \text{ is} \\ T_{MIN} \text{ to } T_{M} \end{array} $	kΩ	150 75	300 200			175 75	300 200		150 65	300 175		V/mV V/mV
	AAX ait	+13, -1 ±12	12.5 +1 +13 25 50 500	3.8, 1		+13, - ±12	12.5 +13.9, +13.8, 25 50 500		+13, -12.5 ±12	+13.9, -13.3 +13.8, 13.1 25 50 500		V V mA pF pF
POWER SUPPLY Rated Performance Operating Range Quiescent Current		±4.5	± 15	5	±18 10	±4.5	±15	±18 8.0	±4.5	± 15	±18	V V mA
TEMPERATURE RANGE Rated Performance		0.0	o +70/ 4	10 ra +	85		40 to +	-85		55 to +125		"C
PACKAGE OPTIONS¹ 8-Pin Plastic Min-DIP (N-8) 8-Pin Cerdip (Q-8) 8-Pin Surface Mount (R-8) Tape and Reel Chips			AD74 AD74 AD746JR	6JN 6AQ 6JR			AD7461		A	AD746SQ D746SCHIPS		
TRANSISTOR COUNT	1		54				54			54	_	

NOTE
For outline information see Package Information section.
Specifications subject to change without notice.