

Linear Integrated Systems

FEATURES						
ULTRA LOW NOISE	en	= 0.9nV/√Hz (typ)				
TIGHT MATCHING	_{SS1-2} = 20mV max					
HIGH BREAKDOWN VOLTAGE						
HIGH GAIN	$Y_{fs} = 20 \text{mS (typ)}$					
LOW CAPACITANCE		25pF typ				
IMPROVED SECOND SOURCE REPLACEMENT FOR 2SK389						
ABSOLUTE MAXIMUM RATINGS ¹						
@ 25 °C (unless otherwise stated)						
Maximum Temperatures						
Storage Temperature	-65 to +150 °C					
Operating Junction Temperature	-55 to +135 °C					
Maximum Power Dissipation						
Continuous Power Dissipation @ +125 °C	400mW					
Maximum Currents						
Gate Forward Current	$I_{G(F)} = 10mA$					
Maximum Voltages						
Gate to Source	$V_{GSS} = 40V$					
Gate to Drain	$V_{GDS} = 40V$					

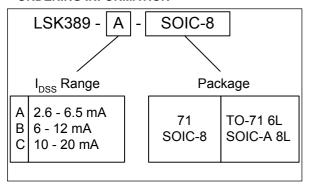
LSK389

ULTRA LOW NOISE MONOLITHIC DUAL N-CHANNEL JFET

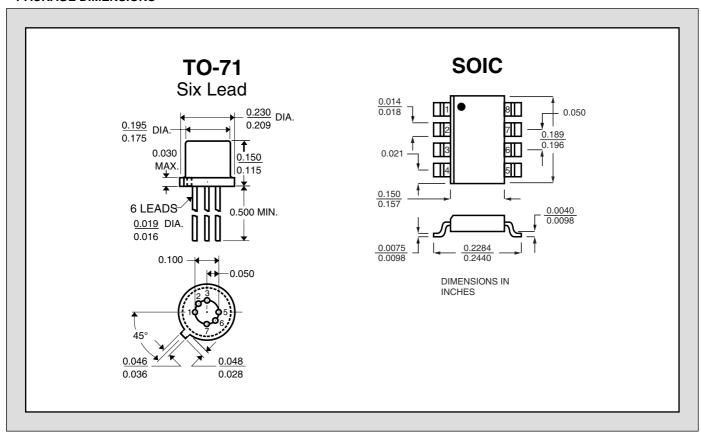
*For equivalent single version, see LSK170 family.

MATCHING CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNIT	CONDITIONS
$\left V_{GS1}-V_{GS2}\right $	Differential Gate to Source Cutoff Voltage			20	mV	V _{DS} = 10V, I _D = 1mA
IDSS1 IDSS2	Gate to Source Saturation Current Ratio	0.9			-	V _{DS} = 10V, V _{GS} = 0V


ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage Gate to Source Pinch-off Voltage		40			>	$V_{DS} = 0$, $I_{D} = 100 \mu A$
$V_{GS(OFF)}$			0.15		2	٧	$V_{DS} = 10V, I_D = 0.1 \mu A$
	Drain to Source Saturation Current	LSK389A	2.6		6.5	mA	V _{DS} = 10V, V _{GS} = 0
I_{DSS}		LSK389B	6		12		
		LSK389C	10		20		
I _{GSS}	Gate to Source Leakage Current				200	pА	$V_{GS} = -30V, V_{DS} = 0$


ELECTRICAL CHARACTERISTICS CONT. @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
Y _{fs}	Full Conduction Transconductance	8	20		mS	V_{DS} = 10V, V_{GS} = 0, I_{DSS} = 3mA, f = 1kHz
e _n	Noise Voltage		0.9	1.9	nV/√Hz	V_{DS} = 10V, I_{D} = 2mA, f = 1kHz, NBW = 1Hz
e _n	Noise Voltage		2.5	4	nV/√Hz	V_{DS} = 10V, I_{D} = 2mA, f = 10Hz, NBW = 1Hz
C _{ISS}	Common Source Input Capacitance		25		pF	$V_{DS} = 10V, V_{GS} = 0, f = 1MHz,$
C _{RSS}	Common Source Reverse Transfer Cap.		5.5		pF	$V_{DG} = 10V$, $I_{D} = 0$, $f = 1MHz$,

ORDERING INFORMATION

PACKAGE DIMENSIONS

Absolute maximum ratings are limiting values above which serviceability may be impaired.

Information furnished by Linear Integrated Systems is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems. Revised 07 Decembe 2005.