5-TAP DIP/SMD DELAY LINE $T_D/T_R = 3$ **SERIES 1516)**

FEATURES

- 5 taps of equal delay increment
- Delays to 200ns
- Low profile
- Epoxy encapsulated
- Meets or exceeds MIL-D-23859C

8□ GND GND \Box_2 7□ T5 IN □3 6□ T4 T1 T2 □4 5□ T3

PACKAGES

Signal Input T1-T5 **Tap Outputs GND** Ground

Note: Standard pinout shown Other pinouts available

FUNCTIONAL DESCRIPTION

The 1516-series device is a fixed, single-input, fiveoutput, passive delay line. The signal input (IN) is reproduced at the outputs (T1-T5) in equal increments. The delay from IN to T5 (T_D) and the characteristic impedance of the line (Z) are determined by the dash number. The rise time (T_R) of the line is 30% of T_D, and the 3dB bandwidth is given by 1.05 / T_D. The device is available in a 8-pin DIP (1516) or a 8-pin SMD (1516S). and a wide range of pinouts may be specified.

Part numbers are constructed according to the scheme shown at right. For example, 1516C-101-500B is a 290 mil DIP. 100ns. 50Ω delay line with pinout code B. Similarly, 1516SB-151-501 is a 240 mil SMD, 150ns, 500Ω delay line with standard pinout.

PART NUMBER CONSTRUCTION

1516(S)m - xxx - zzz p

MOUNTING HEIGHT CODE

See Table

DELAY TIME

Expressed in nanoseconds (ns) First two digits are significant figures Last digit specifies # of zeros to follow

IMPEDANCE

Expressed in nanoseconds (ns) First two digits are significant figures Last digit specifies # of zeros to follow

> PINOUT CODE See Table Omit for STD pinout

SERIES SPECIFICATIONS

50 Vdc Dielectric breakdown: **Distortion @ output:** 10% max. **Operating temperature:** -55°C to +125°C Storage temperature: -55°C to +125°C

Temperature coefficient: 100 PPM/°C

DELAY SPECIFICATIONS

T _D	Tı	T _R	ATTENUATION (%) TYPICAL				
(ns)	(ns)	(ns)	Z=50Ω	Z=100Ω	Z=200Ω	Z=300Ω	Z=500 Ω
5	1.0	3.0	N/A	5	N/A	N/A	N/A
10	2.0	4.0	3	5	5	N/A	N/A
15	3.0	5.0	3	5	5	N/A	N/A
20	4.0	6.0	3	5	5	5	N/A
25	5.0	7.0	3	5	5	5	7
30	6.0	10.0	3	5	5	5	7
40	8.0	13.0	3	5	5	5	7
50	10.0	15.0	3	5	5	7	7
60	12.0	20.0	3	5	6	7	8
75	15.0	25.0	3	5	6	7	8
80	16.0	26.0	4	5	6	7	8
100	20.0	30.0	4	5	6	7	8
110	22.0	32.0	4	5	6	7	8
125	25.0	40.0	4	5	6	7	8
150	30.0	50.0	N/A	5	8	10	10
180	36.0	60.0	N/A	7	8	10	10
200	50.0	70.0	N/A	8	10	12	12

MOUNTING HEIGHT CODES

PINOUT CODES

T3 T4

5

GND

1,8

5.8

8

1,8

T1 T2

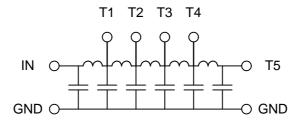
3 6

3 4 5 6

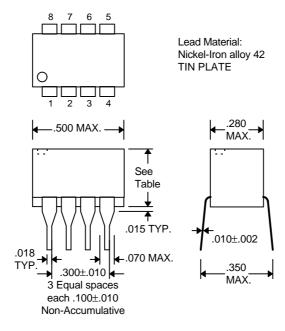
2 3 4 6

CODE	HEIGHT (MAX)	DIP	SMD
Α	0.187	Yes	No
В	0.240	Yes	Yes
C	0.290	Yes	Yes

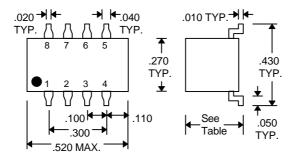
Codes A and B are not available Note: for all values of T_D Contact technical staff for details Notes: T_I represents nominal tap-to-tap delay increment Tolerance on $T_D = \pm 5\%$ or $\pm 2ns$, whichever is greater Tolerance on $T_1 = \pm 5\%$ or ± 1 ns, whichever is greater "N/A" indicates that delay is not available at this Z


©1997 Data Delay Devices

CODE IN


STD

В


FUNCTIONAL DIAGRAM

PACKAGE DIMENSIONS

1516-xx (DIP)

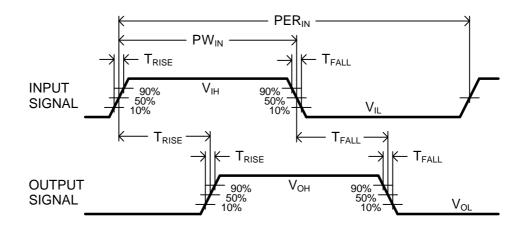
1516S-xx (Gull-Wing)

http://www.datadelay.com

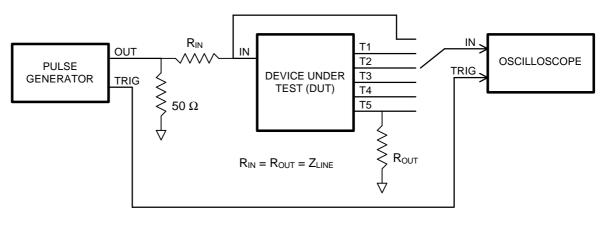
PASSIVE DELAY LINE TEST SPECIFICATIONS

TEST CONDITIONS

INPUT: OUTPUT:


Ambient Temperature: $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ R_{load}: $10\text{M}\Omega$ Input Pulse: High = 3.0V typical C_{load}: 10pf

Low = 0.0V typical **Threshold:** 50% (Rising & Falling)


Source Impedance: 50Ω Max.

Rise/Fall Time: 3.0 ns Max. (measured at 10% and 90% levels)

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing

Test Setup