2.5V 20-Bit Flip-Flop with 3-State Outputs #### **Product Features** - PI74AVC+16721 is designed for low voltage operation, $V_{CC} = 1.65 \text{V} \text{ to } 3.6 \text{V}$ - True ±24mA Balanced Drive @ 3.3V - I_{OFF} supports partial power-down operation - 3.6V I/O Tolerant inputs and outputs - All outputs contain a patented DDC (Dynamic DriveControl) circuit that reduces noise without degrading propagation delay. - Industrial operation at -40°C to +85°C - Available Packages: - 56-pin 240 mil wide plastic TSSOP (A) - -56-pin 173 mil wide plastic TVSOP (TSSOP) (K) #### **Product Description** Pericom Semiconductor's PI74AVC+ series of logic circuits are produced using the Company's advanced submicron CMOS technology, achieving industry leading speed. The PI74AVC+16721 is a 20-bit flip-flop with 3-state outputs designed specifically for 1.65V to 3.6V V_{CC} operation. The device is designed with edge-triggered D-type flip-flops with qualified clock storage. On the positive transition of clock (CLK) input, the device provides true data at the Q outputs, provided that the clock-enable (CLKEN) input is LOW. If CLKEN is HIGH, no data is stored. A buffered output-enable (\overline{OE}) input can be used to place the 20 outputs in either a normal logic state (HIGH or LOW level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capacity to drive bus lines without the need for interface or pullup components. \overline{OE} does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the highimpedance state. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. #### Logic Block Diagram #### **Product Pin Description** | Pin Name | Description | |----------|----------------------------------| | ŌĒ | Output Enable Input (Active LOW) | | CLKEN | Clock Enable Input (Active LOW) | | CLK | Clock Input (Active HIGH) | | Dx | Data Inputs | | Qx | 3-State Outputs | | GND | Ground | | VCC | Power | ### **Product Pin Configuration** #### Truth Table⁽¹⁾ | | Inputs | | | | | | | | | | |----|--------|--------|----|----------------|--|--|--|--|--|--| | ŌĒ | CLKEN | CLK | Dx | Qx | | | | | | | | L | Н | X | X | Q ₀ | | | | | | | | L | L | _ | Н | Н | | | | | | | | L | L | - | L | L | | | | | | | | L | L | L or H | X | Q ₀ | | | | | | | | Н | X | X | X | Z | | | | | | | #### **Notes:** 1. H=High Signal Level L=Low Signal Level X = Don't Care or Irrelevant Z = High Impedance ↑ = LOW-to-HIGH Transition #### Maximum Ratings above which the useful life may be impaired. (For user guidelines, not tested.) | | <u> </u> | |--|--------------------------------| | Supply voltage range, V _{CC} | -0.5V to +4.6V | | Input voltage range, V _I | 0.5V to +4.6V | | Voltage range applied to any output in the | | | high-impedance or power-off state, $V_0^{(1)}$ | 0.5V to +4.6V | | Voltage range applied to any output in the | | | high or low state, V _O ^(1,2) | -0.5 V to V_{CC} + 0.5 V | | Input clamp current, $I_{IK}(V_I < 0)$ | 50mA | | Output clamp current, I _{OK} (V _O <0) | 50mA | | Continuous output current, IO | ±50mA | | Continuous current through each V _{CC} or GND | ±100mA | | Package thermal impedance, $\theta_{JA}^{(3)}$: package A | 64°C/W | | package K | 48°C/W | | Storage Temperature range, T _{stg} | -65°C to 150°C | | | | #### Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. #### **Notes:** - 1. Input & output negative-voltage ratings may be exceeded if the input and output curent rating are observed. - 2. Output positive-voltage rating may be exceeded up to 4.6V maximum if theoutput current rating is observed. - 3. The package thermal impedance is calculated in accordance with JESD 51. #### **Recommended Operating Conditions**⁽¹⁾ | | | Min. | Max. | Units | |---|--|------------------------|------------------------|-------| | V Cumply Voltage | Operating | 1.65 | 3.6 | V | | VCC Supply voltage | Data retention only | 1.2 | | | | | $V_{CC} = 1.2V$ | V _{CC} | | | | Input Voltage Output Voltage High-level output current Low-level output current | $V_{CC} = 1.65 V$ to 1.95 V | 0.65 x V _{CC} | | | | | $V_{CC} = 2.3 V \text{ to } 2.7 V$ | 1.7 | | | | | $V_{CC} = 3V$ to 3.6V | 2 | | | | | $V_{CC} = 1.2V$ | | Gnd | | | V _{IL} Low-level Input Voltage | $V_{CC} = 1.65 V \text{ to } 1.95 V$ | | 0.35 x V _{CC} | | | | $V_{CC} = 2.3 V \text{ to } 2.7 V$ | | 0.7 | | | | $V_{CC} = 3V$ to 3.6V | | 0.8 | | | V _I Input Voltage | | 0 | 3.6 | | | V. Ostant William | Active State | 0 | V _{CC} | | | Vo Output Voltage | 3-State | 0 | 3.6 | | | | $V_{CC} = 1.65 V \text{ to } 1.95 V$ | | - 6 | | | I _{OH} High-level output current | $V_{CC} = 2.3 V \text{ to } 2.7 V$ | | - 12 | | | | $V_{CC} = 3V$ to 3.6V | | - 24 | | | | $V_{CC} = 1.65 V \text{ to } 1.95 V$ | | 6 | mA | | I _{OL} Low-level output current | $V_{\rm CC} = 2.3 \text{V to } 2.7 \text{V}$ | | 12 | | | | $V_{CC} = 3V$ to 3.6V | | 24 | | | $\Delta t \Delta v$ Input transition rise or fall rate | $V_{CC} = 1.65 V \text{ to } 3.6 V$ | | 5 | ns/V | | T _A Operating free-air temperature | 1 | -40 | 85 | °C | #### **Notes:** 1. All unused inputs must be held at V_{CC} or GND to ensure proper device operation. # DC Electrical Characteristics over the Operating Range $(T_A$ = $-40^{\circ}C$ +85 $^{\circ}C)$ | | Parameters | Test (| Conditions ⁽¹⁾ | V _{CC} | Min. | Тур. | Max. | Units | |------------------|----------------------------|---|---------------------------|-----------------|-----------------------|------|------|------------| | | | $I_{OH} = -100 \mu A$ | | 1.65V to 3.6V | V _{CC} -0.2V | | | | | | V | $I_{OH} = -6mA$ | $V_{IH} = 1.07V$ | 1.65V | 1.2 | | |] | | | V_{OH} | $I_{OH} = -12mA$ | $V_{IH} = 1.7V$ | 2.3V | 1.75 | | | | | | | $I_{OH} = -24 \text{mA}$ | $V_{IH} = 2V$ | 3V | 2.0 | | | V | | | | $I_{OL} = 100 \mu A$ | | 1.65V to 3.6V | | | 0.2 |] v | | | V_{OL} | $I_{OL} = 6mA$ | $V_{IH} = 0.57V$ | 1.65V | | | 0.45 | | | | | $I_{OL} = 12mA$ | $V_{IH} = 0.7V$ | 2.3V | | | 0.55 | | | | | $I_{OL} = 24mA$ | $V_{\rm IH} = 0.8 V$ | 3V | | | 0.8 | | | I _I | Control Inputs | $V_{\rm I} = V_{\rm CC}$ or $G_{\rm I}$ | ND | 3.6V | | | ±2.5 | | | I _{OFF} | | $V_{\rm I}$ or $V_{\rm O} = 3.6$ | 5V | 0 | | | ±10 | | | Ioz | | $V_{\rm I} = V_{\rm CC}$ or $G_{\rm I}$ | ND | 3.6V | | | ±10 | μΑ | | I _{CC} | | $V_{O} = V_{CC}$ or C | $I_{O} = 0$ | 3.6V | | | 40 | | | | Control Imputa | | | 2.5V | | 4 | | | | C- | Control Inputs | $V_{I} = V_{CC}$ or GND | | 3.3V | | 4 | | | | CI | C _I Data Inputs | | | 2.5V | | 6 | | | | | | | | 3.3V | | 6 | | pF | | Co | Outputs | V - V - on C | 'NID | 2.5V | | 8 | | | | | Outputs | $V_{\rm O} = V_{\rm CC}$ or C | מאנ | 3.3V | | 8 | | | **Note:** Typical values are measured at $T_A = 25^{\circ}C$. # $Timing\,Requirements\,over\,recommended\,operating\,free-air\,temperature\,range$ (unless otherwise noted, see Figures 1 thru 4) | | | V _{CC} = 1.2 V | | V _{CC} = 1.5V
±0.1V | | V _{CC} = 1.8V
±0.15V | | V _{CC} = 2.5V
±0.2V | | V _{CC} = 3.3V
±0.3V | | Units | |------------------------------|------------------------------------|-------------------------|------|---------------------------------|------|----------------------------------|------|---------------------------------|------|---------------------------------|------|-------| | | | Min. | Max. | | | f _{clock} Clock Fre | f _{clock} Clock Frequency | | | | | | 150 | | 180 | | 180 | MHz | | tw Pulse duration | tw Pulse duration, CLK high or low | | | | | 6.0 | | 3.0 | | 3.0 | | | | 4 Catana tima | Data before CLK↑ | | | | | 5.7 | | 3.5 | | 2.4 | | | | t _{su} Setup time | CLKEN before CLK↑ | | | | | 2.2 | | 2.0 | | 1.6 | | ns | | t _h Hold time | Data after CLK↑ | | | | | 0 | | 0 | | 0 | | | | | CLKEN after CLK↑ | | | | | 1.2 | | 1.0 | | 1.0 | | | # $Switching\,Characteristics\,over\,recommended\,operating\,free-air\,temperature\,range$ (unless otherwise noted, see Figures 1 thru 4) | Parameters | From To | | V _{CC} = 1.2V | | V _{CC} = 1.5V
±0.1V | | V _{CC} = 1.8V
±0.15V | | V _{CC} = 2.5V
±0.2V | | V _{CC} = 3.3V
±0.3V | | Units | |------------------|---------|----------|------------------------|------|---------------------------------|------|----------------------------------|------|---------------------------------|------|---------------------------------|------|-------| | | (Input) | (Output) | Min. | Max. | | | f _{max} | | | | | | | 150 | | 180 | | 180 | | MHz | | t _{pd} | CLK | Q | | | | | | 4.3 | | 3.0 | | 2.6 | | | t _{en} | ŌĒ | Q | | | | | | 5.8 | | 4.8 | | 4.0 | ns | | t _{dis} | ŌĒ | Q | | | | | | 4.8 | | 3.6 | | 3.4 | | ## Operating Characteristics, $T_A = 25^{\circ}C$ | Parameters | | Test Conditions | Vcc = 1.8V
±0.15V | Vcc = 2.5V
±0.2V | Vcc = 3.3V
±0.3V | Units | |----------------------------|------------------|----------------------------|----------------------|---------------------|---------------------|-------| | | | | Typical | Typical | Typical | | | Cpd Power Outputs Enable | | C OrE f 10 MH- | 65 | 80 | 100 | E | | Dissipation
Capacitance | Outputs Disabled | $C_L = 0$ pF, $f = 10$ MHz | 40 | 50 | 75 | pF | 5 # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.2V$ and $1.5V \pm 0.1V$ # Test S1 tpd Open tpLZ/tpZL 2 x V_{CC} tpHZ/tpZH GND # **Load Circuit** Voltage Waveforms Setup and Hold Times ## Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 1. Load Circuit and Voltage Waveforms #### **Notes:** - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_R \leq$ 2.0ns, $t_F \leq$ 2.0ns. 6 - D. The outputs are measured one at a time with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} - F. tpzL and tpzH are the same as ten - G. tpLH and tpHL are the same as tpd # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 1.8V \pm 0.15V$ # Test S1 tpd Open tpLz/tpzl 2 x V_{CC} tpHz/tpzh GND Voltage Waveforms Setup and Hold Times ## Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 2. Load Circuit and Voltage Waveforms #### **Notes:** - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_R \leq$ 2.0ns, $t_F \leq$ 2.0ns. 7 - D. The outputs are measured one at a time with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} - F. tpzL and tpzH are the same as ten - G. tpLH and tpHL are the same as tpd # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5V \pm 0.2V$ # Test S1 tpd Open tpLz/tpzl 2 x V_{CC} tpHz/tpzh GND Voltage Waveforms Setup and Hold Times ## Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 3. Load Circuit and Voltage Waveforms #### **Notes:** - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_R \leq$ 2.0ns, $t_F \leq$ 2.0ns. 8 - D. The outputs are measured one at a time with one transition per measurement. - E. tpLz and tpHz are the same as tdis - F. tpzL and tpzH are the same as ten - G. tpLH and tpHL are the same as tpd # PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3V \pm 0.3V$ # Test S1 tpd Open tpLz/tpzl 2 x V_{CC} tpHz/tpzh GND Voltage Waveforms Setup and Hold Times ## Voltage Waveforms Pulse Duration Voltage Waveforms Propagation Delay Times Voltage Waveforms Enable and Disable Times Figure 4. Load Circuit and Voltage Waveforms #### **Notes:** - A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input impulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50\Omega$, $t_R \leq$ 2.0ns, $t_F \leq$ 2.0ns. 9 - D. The outputs are measured one at a time with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} - F. tpzL and tpzH are the same as ten - G. tpLH and tpHL are the same as tpd #### Package Diagram: 56-pin 240-mil, Wide Plastic TSSOP(A) ### Package Diagram: 56-pin 173-mil, Wide Plastic TVSOP (TSSOP) (K) #### **Pericom Semiconductor Corporation** 2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com