2 mm x 5 mm Rectangular LED Lamps # Technical Data HLMP-S100 HLMP-S20X Series HLMP-S30X Series HLMP-S40X Series HLMP-S50X Series HLMP-S600 ### **Features** - Rectangular Light Emitting Surface - Excellent for Flush Mounting on Panels - Choice of Five Bright Colors - Long Life: Solid State Reliability - Excellent Uniformity of Light Output ### Description The HLMP-S100, -S200, -S300, -S400, -S500, S600 are epoxy encapsulated lamps in rectangular packages which are easily stacked in arrays or used for discrete front panel indicators. Contrast and light uniformity are enhanced by a special epoxy diffusion and tinting process. The HLMP-S100 uses double heterojunction (DH) absorbing substrate (AS) aluminum gallium arsenide (AlGaAs) LEDs to produce outstanding light output ## **Package Dimensions** ### NOTES - 1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES - 1 mm (0.040") DOWN THE LEADS. 3. THERE IS A MAXIMUM IT TAPER FROM - 3. THERE IS A MAXIMUM IT TAPER FRO BASE TO THE TOP OF LAMP. 1-153 # Electrical/Optical Characteristics at $T_A = 25$ °C | Sym. | Description | Device HLMP- | Min. | Тур. | Max. | Units | Test Conditions | |---------------------|--|---|--------------------------|--|--------------------------|-------|---| | I_{v} | Luminous
Intensity | AlGaAs Red
S100
High Efficiency Red | 3.4 | 7.5 | | mcd. | I _F = 20 mA | | | | S200 | 2.1 | 3.5 | | | | | | | S201 | 3.4 | 7.5 | | | | | | | Orange | | | | | | | | | S400 | 2.1 | 3.5 | | | | | | | S401 | 3.4 | 7.5 | | | | | | | Yellow | 1 4 | 0.1 | | | | | | | S300
S301 | 1.4
2.2 | 2.1
4.0 | | | | | | | Green | 2.2 | 4.0 | | | | | | | S500 | 2.6 | 4.0 | | | | | | | S501 | 4.2 | 8.0 | | | | | | | Emerald Green | | 5.5 | | | | | | | S600 ^[4] | 1.0 | 3.0 | | | | | 201/2 | Included Angle
Between Half
Luminous
Intensity Points | All | | 110 | | Deg. | I _F = 20 mA
See Note 1 | | λ _{PEAK} | Peak Wavelength | AlGaAs Red
High Efficiency Red
Orange
Yellow
Green
Emerald Green | | 645
635
600
583
565
558 | | nm | Measurement at
Peak | | λ_{d} | Dominant
Wavelength | AlGaAs Red
High Efficiency Red
Orange
Yellow
Green
Emerald Green | | 637
626
602
585
569
560 | | nm | See Note 2
Time const, e ^{-t/ts} | | $ au_{ m s}$ | Speed of
Response | AlGaAs Red
High Efficiency Red
Orange
Yellow
Green
Emerald Green | | 30
90
280
90
500
3100 | | ns | | | C | Capacitance | AlGaAs Red
High Efficiency Red
Orange
Yellow
Green
Emerald Green | | 30
11
4
15
18
35 | | pF | $V_F = 0$; $f = 1 \text{ MHz}$ | | R0 _{J-PIN} | Thermal
Resistance | All | | 260 | | °C/W | Junction to Cathode
Lead at Seating
Plane | | $V_{ m F}$ | Forward Voltage | AlGaAs Red
HER/Orange
Yellow
Green/Emerald
Green | 1.6
1.5
1.5
1.5 | 1.8
1.9
2.1
2.2 | 2.2
2.6
2.6
3.0 | v | I _F = 20 mA | | V _R | Reverse Break-
down Voltage | All | 5.0 | | | v | $I_R = 100 \mu\text{A}$ | # Electrical/Optical Characteristics at $T_A = 25^{\circ}C$ (cont'd) | Sym. | Description | Device HLMP- | Min. | Тур. | Max. | Units | Test Conditions | |----------------|----------------------|---|------|---------------------------------------|------|-----------------|-----------------| | η _v | Luminous
Efficacy | AlGaAs Red
High Efficiency Red
Orange
Yellow
Green
Emerald Green | | 80
145
380
500
595
656 | | lumens/
watt | See Note 3 | #### Notes: - 1. $\theta_{1/2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity. - 2. The dominant wavelength, λ_d , is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device. - 3. Radiant intensity, I_e , in watts/steradian, may be found from the equation $I_e = I_v/\eta_v$, where I_v is the luminous intensity in candelas and η_v is the luminous efficacy in lumens/watt. - 4. Please refer to Application Note 1061 for information comparing standard green and emerald green light output degradation. # Absolute Maximum Ratings at $T_A = 25$ °C | Parameter | AlGaAs
Red | High Efficiency
Red/Orange | Yellow | Green/
Emerald
Green | Units | | | | |---|--------------------|-------------------------------|-------------|----------------------------|-------|--|--|--| | Peak Forward Current | 300 | 90 | 60 | 90 | mA | | | | | Average Forward Current[1] | 20 | 25 | 20 | 25 | mA | | | | | DC Current ^[2] | 30 | 30 | 20 | 30 | mA | | | | | Transient Forward Current ^[3] 500 (10 μsec Pulse) | | | | | | | | | | LED Junction Temperature | 110 | 110 | 110 | 110 | °C | | | | | Operating Temperature Range | -20 to +100 | -55 to +100 | -55 to +100 | -20 to +100 | ℃ | | | | | Storage Temperature Range | -55 to +100 | -99 to +100 | -55 to +100 | -55 to +100 | | | | | | Lead Soldering Temperature [1.6 mm (0.063 in.) below seating plane] | 260℃ for 5 seconds | | | | | | | | ### Notes - 1. See Figure 5 to establish pulsed operating conditions. - For AlGaAs Red, Red, Orange, and Green series derate linearly from 50°C at 0.5 mA/°C. For Yellow series derate linearly from 50°C at 0.34 mA/°C. - 3. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wire bond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings. Figure 1. Relative Intensity vs. Wavelength. AIGAAS RED OS 100 15 20 25 30 Figure 2. Forward Current vs. Forward Voltage Characteristics. $V_{\rm F}$ (300 mA) for AlGaAs Red = 2.6 Volts Typical. Figure 3. Relative Luminous Intensity vs. DC Forward Current. Figure 4. Relative Efficiency (Luminous Intensity per Unit Current) vs. LED Peak Current. ηv (300 mA) for AlGaAs Red = 0.7. tp -- PULSE DURATION -- με Figure 5. Maximum Tolerable Peak Current vs. Peak Duration. (I $_{\rm PEAK}$ MAX Determined from Temperature Derated I $_{\rm DC}$ MAX). Figure 6. Relative Luminous Intensity vs. Angular Displacement.