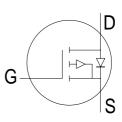



MECHANICAL DATA Dimensions in mm (inches)




TO-3 Package (TO-204AA)



## IRF9240 IRFN9240SMD





### FEATURES

- P-CHANNEL POWER MOSFET
- HIGH VOLTAGE
- INTEGRAL PROTECTION DIODE
- AVAILABLE IN TO-3 (TO-204AA) AND CERAMIC SURFACE MOUNT SMD1 (TO276AB)PACKAGE
  - **Note:** IRF9240SMD also available with pins 1 and 3 reversed on SMD 1 package.

#### **ABSOLUTE MAXIMUM RATINGS** (T<sub>case</sub> = 25°C unless otherwise stated)

|                  |                                               |                             | ,            |
|------------------|-----------------------------------------------|-----------------------------|--------------|
| V <sub>DSS</sub> | Drain – Source Voltage                        |                             | -200V        |
| V <sub>DGR</sub> | Drain – Gate Voltage (R <sub>GS</sub> = 20KΩ) |                             | –200V        |
| V <sub>GS</sub>  | Gate – Source Voltage                         | Gate – Source Voltage       |              |
| I <sub>D</sub>   | Continuous Drain Current                      | @ T <sub>case</sub> = 25°C  | -11A         |
|                  |                                               | @ T <sub>case</sub> = 100°C | -7.0A        |
| I <sub>DM</sub>  | Pulsed Drain Current                          |                             | -44A         |
| P <sub>D</sub>   | Max. Power Dissipation                        | @ T <sub>case</sub> = 25°C  | 125W         |
|                  | Linear Derating Factor                        |                             | 1W / °C      |
| т <sub>і</sub>   | Operating Junction and                        |                             | EE to 150°C  |
| T <sub>stg</sub> | Storage Temperature Range                     |                             | –55 to 150°C |
|                  |                                               |                             |              |

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk



# IRF9240 IRFN9240SMD

## **ELECTRICAL RATINGS** (T<sub>case</sub> = 25°C unless otherwise stated)

|                     | Characteristic                            | Test Conditions                                     | Min. | Тур. | Max. | Unit |
|---------------------|-------------------------------------------|-----------------------------------------------------|------|------|------|------|
| BV <sub>DSS</sub>   | Drain – Source Breakdown Voltage          | $V_{GS} = 0V$ , $I_D = -1mA$                        | -200 |      |      | V    |
| V <sub>GS(TH)</sub> | Gate Threshold Voltage                    | $V_{DS} = V_{GS}$ , $I_D = -250\mu A$               | -2   |      | -4   | V    |
| I <sub>GSS</sub>    | Gate – Source Leakage Current (forward)   | V <sub>GS</sub> = -20V                              |      |      | -100 | nA   |
|                     | Gate – Source Leakage Current (reverse)   | V <sub>GS</sub> = 20V                               |      |      | 100  | nA   |
| I <sub>DSS</sub>    |                                           | $V_{DS} = -160V$ , $V_{GS} = 0V$                    |      |      | -25  | μA   |
|                     | Zero Gate Voltage Drain Current           | V <sub>DS</sub> = -160V                             |      |      | -1   | mA   |
|                     |                                           | $V_{GS} = 0V$ , $T_{case} = 125^{\circ}C$           |      |      | -1   |      |
| I <sub>D(ON)</sub>  | On State Drain Current <sup>1</sup>       | $V_{DS} > I_{D(ON)} \times R_{DS(ON)} Max$          | 11   |      |      | A    |
|                     |                                           | $V_{GS} = -10V$                                     | -11  |      |      | A    |
| R <sub>DS(ON)</sub> | Static Drain – Source On-State Resistance | $V_{GS} = -10V$ , $I_D = -7A$                       |      | 0.35 | 0.5  | Ω    |
|                     | Forward Transconductance <sup>1</sup>     | $V_{DS} > I_{D(ON)} \times R_{DS(ON)} Max$          | 4    | 6    |      | S    |
| 9 <sub>fs</sub>     |                                           | $I_D = -6A$                                         | 4    | 0    |      |      |
| C <sub>iss</sub>    | Input capacitance                         | $V_{GS} = 0V$                                       |      | 1200 |      |      |
| C <sub>oss</sub>    | Output capacitance                        | $V_{DS} = -25V$                                     |      | 570  |      | pF   |
| C <sub>rss</sub>    | Reverse transfer capacitance              | f = 1MHz                                            |      | 81   |      | 1    |
| Qg                  | Total Gate Charge                         | V <sub>GS</sub> = -10V                              | 28   |      | 60   |      |
| Q <sub>gs</sub>     | Gate – Source Charge                      | $I_D = -11A$                                        | 3.0  |      | 15   | nC   |
| Q <sub>gd</sub>     | Gate – Drain ("Miller") Charge            | V <sub>DS</sub> = -100V                             | 4.5  |      | 38   | 1    |
| t <sub>d(on)</sub>  | Turn-on Delay Time                        | $V_{DD} = -100V$ $I_{D} = -11A$ $Z_{O} = 9.1\Omega$ |      |      | 35   |      |
| t <sub>r</sub>      | Rise Time                                 |                                                     |      |      | 85   | - ns |
| t <sub>d(off)</sub> | Turn-off Delay Time                       |                                                     |      |      | 85   |      |
| t <sub>f</sub>      | Fall Time                                 |                                                     |      |      | 65   |      |
| L <sub>D</sub>      | Internal Drain Inductance                 |                                                     |      | 5.0  |      | nH   |
| L <sub>S</sub>      | Internal Source Inductance                |                                                     |      | 12.5 |      | nH   |
| HERMAL              | CHARACTERISTICS                           | •                                                   |      |      |      |      |
|                     | Characteristic                            |                                                     | Min. | Тур. | Max. | Uni  |

|                  |                                                                  | IVIII.  | Typ. | IVIAA. | Unit |
|------------------|------------------------------------------------------------------|---------|------|--------|------|
| R <sub>θJC</sub> | Junction to Case                                                 |         |      | 1.0    | °C/W |
| R <sub>θJA</sub> | Junction to Ambient (TO-3 package                                | e only) |      | 30     | °C/W |
| ΤL               | Max. Lead Temperature 0.063" from case for 10 sec. (TO-3 package | e only) | 300  |        | °C   |

#### SOURCE – DRAIN DIODE RATINGS AND CHARACTERISTICS

|                 | Characteristic                                  | Test Conditions                                                | Min. | Тур. | Max. | Unit |
|-----------------|-------------------------------------------------|----------------------------------------------------------------|------|------|------|------|
| ۱ <sub>S</sub>  | Continuous Source Current (Body Diode)          |                                                                |      |      | -11  | Α    |
| I <sub>SM</sub> | Pulsed Source Current <sup>1</sup> (Body Diode) |                                                                |      |      | -44  |      |
| V <sub>SD</sub> | Diode Forward Voltage <sup>2</sup>              | $V_{GS} = 0V$ , $I_S = -11A$<br>$T_{case} = 25^{\circ}C$       |      |      | -4.6 | V    |
| t <sub>rr</sub> | Reverse Recovery Time                           | $I_F = -11A$ , $dI_F / dt = 100A/\mu s$<br>$T_j = 25^{\circ}C$ |      | 270  |      | ns   |
| Q <sub>rr</sub> | Reverse Recovery Charge                         | $I_F = -11A$ , $dI_F / dt = 100A/\mu s$<br>$T_j = 25^{\circ}C$ |      | 2.0  |      | μC   |

1) Pulse Test: Pulse Width <  $300\mu$ S, Duty Cycle  $\leq 2\%$  2) Repetitive Rating: Pulse Width limited by maximum junction temperature.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.