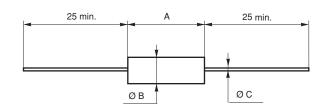
Vishay Sfernice


Molded Metal Film High Stability Resistors

FEATURES

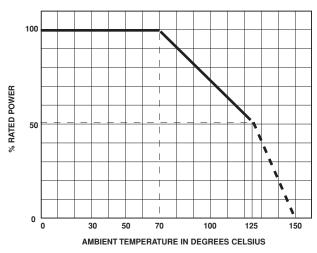
- 0.125W to 1W at 70°C
- NF C 83-230
- CECC 40 100
- High long term stability drift < 0.5% after 1000 hours
- · High reliability
- · Tight temperature coefficient
- · Excellent initial precision
- · Accurate dimensions, high insulation
- · Great mechanical strength

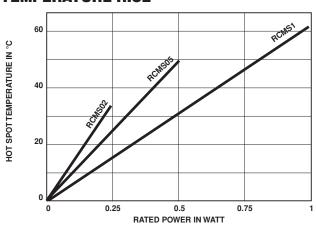
DIMENSIONS in millimeters

DIMEN- SIONS SERIES		ØВ	øс	UNIT WEIGHT IN G.
RCMS02	6.5 ± 0.2	2.5 -0 -0.2	0.6	0.26
RCMS05	10.2 ± 0.2	3.65 ± 0.1	0.6	0.46
RCMS1	16 ± 0.5	6.2 ± 0.2	0.8	1.30

TECHNICAL SPECIFICATIONS							
VISHAY SFERNICE SERIES		RCMS02			RCMS05		RCMS1
NF C / CECC 83-230		RS58Y	RS64Y	RS71Y	RS63Y	RS69Y	RS68Y
CECC 40 100-803		ВС	_	_	CC	_	DC
MIL-R-10509 F (Conform	iity)	RN55C	_		RN60C	_	RN65C
Power Rating at 70°C		0.125W	0.250W	0.500W	0.250W	0.500W	0.500W
Resistance Value Range in Relation to Tolerance	± 1% E96	1Ω 332kΩ	1Ω 332kΩ	1Ω 332kΩ	1Ω 1ΜΩ	1Ω 1ΜΩ	1Ω to $2.21MΩ$
Maximum Voltage		300V	300V	350V	350V	350V	400V
Critical Resistance		ı	_	_	490kΩ	245kΩ	320kΩ
Temperature Coefficient	Rated in the range – 55°C + 155°C	K3 ≤ ± 50ppm/°C					
	Typical in the range – 10°C + 70°C	K3 ≤ ± 30ppm/°C					
Insulation Resistance (Typical)		≥ 10 ⁷ MΩ (500VDC)					
Voltage Coefficient		10ppm/Volt					
Environmental Specification		− 65°C/+ 155°C/56 days					

Undergoes European Quality Insurance System (CECC)


Vishay Sfernice


Molded Metal Film High Stability Resistors

PERFORMANCE					
NF C	TYPICAL VALUES				
TESTS	CONDITIONS	REQUIREMENTS	AND DRIFTS		
Load Life at max. Category Temperature	1000h at 125°C 50% of Pn	\leq ± (1% + 0.05 Ω) Insulation resist. >1G Ω	\pm 0.5% or 0.05 Ω Insulation resist. 10 6 M Ω		
Short Time Overload	2.5Um/5 s limited to 2Un	$\leq \pm (0.25\% + 0.05\Omega)$	\pm 0.1% or 0.05 Ω		
Damp Heat Humidity (Steady State)	56 days with low load	\leq ± (1% + 0.05 Ω) Insulation resist. >1G Ω	$\pm~0.5\%$ or 0.05Ω Insulation resist. $10^6 M\Omega$		
Rapid Temperature Change	−55°C +125°C	$\leq \pm (0.25\% + 0.05\Omega)$	\pm 0.1% or 0.05 Ω		
Climatic Sequence	- 55°C + 125°C severity 1	\leq ± (0.5% + 0.05 Ω) Insulation resist. >1G Ω	\pm 0.1% or 0.05 Ω Insulation resist. 10 6 M Ω		
Terminal Strength	Pull - Twist - 2 bends	≤± (1% + 0.05Ω)	\pm 0.05% or 0.05 Ω		
Vibration	10 - 500Hz	$\leq \pm (0.25\% + 0.05\Omega)$	\pm 0.05% or 0.05 Ω		
Soldering (Thermal Shock)	+ 260°C 10 s	$\leq \pm (0.25\% + 0.05\Omega)$	± 0.1% or 0.05Ω		
Load Life	cycle 90'/30' 1000 h at Pn at 70°C	\leq ± (1% + 0.05 Ω) Insulation resist. > 1G Ω	\pm 0.2% or 0.05 Ω Insulation resist. 10 6 M Ω		
Shelf Life	1 year ambient temperature	_	\pm 0.1% or 0.05 Ω		

POWER RATING CHART

TEMPERATURE RISE

PRACTICAL OPERATING TOLERANCES

Tables 2 and 3 show the basic characteristics and max. values under different stresses. In fact, the values and drifts are maintained to within narrower limits.

Temperature coefficient between – 10°C and + 70°C	K3 ≤ 30ppm/°C		
LONG LIFE	1000 hours at Pr	± 0.25%	
90'/30' cycles	10.000 hours	± 0.5%	
ambient temperature 70°C	at Pr		

Thus, in operation under the specified conditions (Pr at 70°C) the total drift (load life + T.C.) of a RCMS K3 does not exceed ± 0.5%.

NOISE LEVEL

In a frequency decade, the average noise level increases with ohmic value and can reach 0.3 µ V/V for the highest values. It is non measurable for Rn < $2 \text{ k}\Omega$.

RCMS 02, 05, 1

Vishay Sfernice

Molded Metal Film High Stability Resistors

MARKING

Printed: SFERNICE trademark, series, style NF style (if applicable), ohmic value (in Ω), tolerance (in %), temperature coefficient, manufacturing data. Due to lack of space RCMS 02 is printed MS 02.

ORDERING INFORMATION							
RCMS	02		332k Ω	1%	К3		
SERIES	STYLE	SPECIAL DESIGN	OHMIC VALUE	TOLERANCE	TEMPERATURE COEFFICIENT	PACKAGING	
		Method N° Optional				Optional	

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05