
DATA SHEET

CHIP RESISTORS

RC0603 5%; 1%

YAGEO

SERIES

0603

SCOPE

This specification describes RC 0603 series chip resistors made by thick film process.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing style, temperature coefficient, special type and resistance value.

RC0603 X X X X XX XXX (5)

(I) TOLERANCE

 $F = \pm 1\%$ $J = \pm 5\%$

(2) PACKAGING TYPE

R = Paper taping reel C = Bulk case

(3) TEMPERATURE CHARACTERISTIC OF RESISTANCE

 $F = \pm 100 \text{ppm/}^{\circ}\text{C}$

 $G = \pm 200 \text{ppm/}^{\circ}\text{C}$

 $I = \pm 300 \text{ppm/}^{\circ}\text{C}$

- = Base on spec

(4) SPECIAL TYPE

07 = 7 inch dia. Reel

10 = 10 inch dia. Reel

13 = 13 inch dia. Reel

(5) RESISTANCE VALUE:

R056, R56, 5R6, 56R, 560R, 5K6, 56K, 56M.

MARKING

RC0603

E-24 series: 3 digits

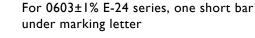

First two digits for significant figure and 3rd digit for number of zeros

Fig. 2 Value=12.4 KΩ

E-96 series: 3 digits for 0603±1% EIA-96

marking method

EIA - 96 MARKING RULE

Table I

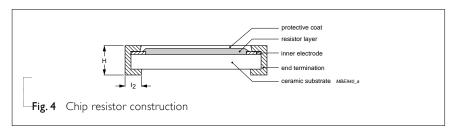
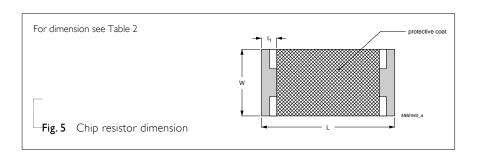

Code	Value														
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	55	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
80	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	215	45	287	57	383	69	511	81	681	93	909
10	124	22	165	34	221	46	294	58	392	70	523	82	698	94	931
11	127	23	169	35	226	47	301	59	402	71	536	83	715	95	953
12	130	24	174	36	232	48	309	60	412	72	549	84	732	96	976

Table I. shows the first two digits of the three-digit EIA-96 part-marking scheme.

The third character is a letter multiplier:

 $X=10^{-1}$, $Y=10^{-2}$, $A=10^{0}$, $B=10^{1}$, $C=10^{2}$, $D=10^{3}$, $E=10^{4}$, $F=10^{5}$

The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance and laser cutting of this resistive layer that achieves



0603

tolerance trims the value. The resistive layer is covered with a protective coat and printed with the resistance value. Finally, the two external terminations are added. See fig. 4.

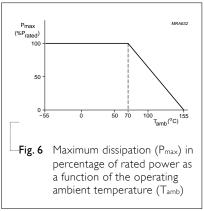

DIMENSIONS

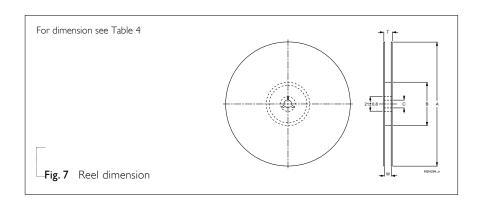
Table 2	
TYPE	RC0603
L (mm)	1.60±0.1
W (mm)	0.80±0.10
H (mm)	0.45±0.10
I _I (mm)	0.25±0.15
l ₂ (mm)	0.25±0.15

POWER RATING

RATED POWER AT 70°C, RC0603 1/10W

ELECTRICAL CHARACTERISTICS

Table 3 **CHARACTERISTICS** RC0603 1/10 W Operating Temperature Range -55°C to +155°C Maximum Working Voltage 50V 100V Maximum Overload Voltage Dielectric Withstanding Voltage 100V $I\Omega$ to $22M\Omega$ (E24) Resistance Range $I\Omega$ to $4.7M\Omega$ (E96) Zero Ohm Jumper<0.05Ω ± 200 ppm/°C (10Ω <R \leq 10M Ω) Temperature Coefficient ± 300 ppm/°C ($1\Omega \le R < 10\Omega$, $R > 10M\Omega$)


RATED VOLTAGE:

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

V=√(P X R)
Where
V=Continuous rated DC or
AC (rms) working voltage (V)
P=Rated power (W)
R=Resistance value (Ω)

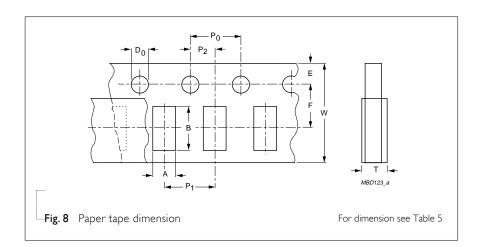

TAPING REEL

Table 4	
DIMENSION	RC0603
Tape Width	8mm
ØA (mm)	180+0/-3
ØB (mm)	60+1/-0
ØC (mm)	13.0±0.2
W (mm)	9.0±0.3
T _{max} (mm)	.4±

PAPER TAPE SPECIFICATION

Table 5	
DIMENSION	RC0603
A (mm)	1.1±0.1
B (mm)	1.90±0.1
W (mm)	8.0±0.2
E (mm)	1.75±0.1
F (mm)	3.5±0.05
P ₀ (mm)	4.0±0.1
P _I (mm)	4.0±0.05
P ₂ (mm)	2.0±0.05
OD_0 (mm)	1.5+0.1/-0
T _{max} (mm)	0.70±0.10

PACKING METHODS

LEADER/TRAILER TAPE SPECIFICATION

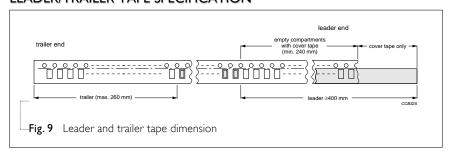
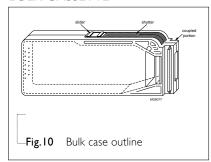
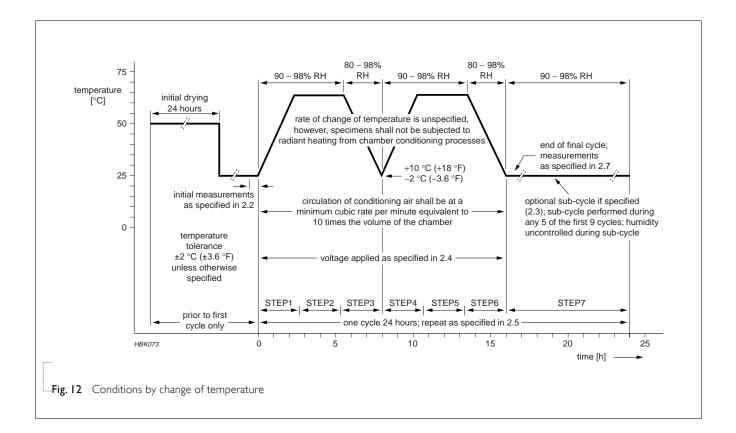



Table 6 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	RC0603
Paper Taping Reel (R)	7" (178 mm)	5,000
	10" (254 mm)	10,000
	13" (330 mm)	20,000
Bulk Cassette (C)		25,000

BULK CASSETTE


TYPE	TEST METHOD	ACCEPTANCE STANDARD			
Temperature Coefficient of Resistance (T.C.R.)	Measure resistance at +25°C or specified room temperature as R ₁ , then measure at -55°C or +125°C respectively as R ₂ Determine the temperature coefficient of resistance from the following formula:	Formula T.C.R.= $\frac{R_2-R_1}{R_1(t_2-t_1)}$ Where $t_1=+25^{\circ}\text{C or specif}$ $t_2=-55^{\circ}\text{C or }+125^{\circ}$ $R_1=\text{resistance at ref}$ $R_2=\text{resistance at test}$	°C test temperatur erence temperatur	Refer to table 3	
Thermal Shock	At -55±3°C for 2 minutes ar cycles, the specimen shall be Measure the resistance to de	$\pm (0.5\% \pm 0.05\Omega)$ for 1% tol. $\pm (1\% \pm 0.05\Omega)$ for 5% tol.			
Low Temperature Operation	Place the specimen in a test of stabilization at this temperature (+5/-0) minutes. Have 15 (+5 shall be removed from the character to decompose the resistance the resistanc	$\pm (0.5\% \pm 0.05\Omega)$ for 1% tol . $\pm (1.0\% \pm 0.05\Omega)$ for 5% tol. No visible damage			
Short Time Overload	Apply 2.5 times of rated volta for 5 seconds. Have the spec minimum. Measure the resistance to de	$\pm (1.0\% + 0.05\Omega)$ for 1% tol. $\pm (2.0\% + 0.05\Omega)$ for 5% tol. No visible damage			
Insulation Resistance	Place the specimen in the jig continues overload voltage minute as shown. Measure the insulation resista	(R.C.O.V) for one	Type Voltage	RC0603	≥10,000MΩ
Dielectric Withstand Voltage	Place the specimen in the jig specified value continuous ov shown for one minute.		Type Voltage	RC0603	Breakdown voltage> specification and without open/short
Resistance To Soldering Heat	Immerse the specimen in the solder pot at 260 \pm 5°C. for 10 \pm 1 seconds. Have the specimen stabilized at room temperature for 30 minutes minimum. Measure the resistance to determine Δ R/R(%).				$\pm (0.5\% \pm 0.05\Omega)$ for 1% tol. $\pm (1.0\% \pm 0.05\Omega)$ for 5% tol. No visible damage

Chip Resistor Surface Mount RC SERIES 0603

TYPE	TEST METHOD	ACCEPTANCE STANDARD				
Moisture Resistance	Place the specimen in the test chamber and sub- one of which consists of the steps I to 7 as figur I,000 hours. Have the specimen stabilized at root testing. Measure the resistance to determine $\Delta R/R(\%)$.	$\pm (0.5\% + 0.05\Omega)$ for 1% tol. $\pm (2.0\% + 0.05\Omega)$ for 5% tol. No visible damage				
Life	at the 1.5 hours on and 0.5 hour off cycle. The t					
Solderability	Immerse the specimen in the solder pot at 230±	nerse the specimen in the solder pot at 230±5°C for 5 sec.				
Bending Strength	Mount the specimen on a test board as shown in the figure 11. Slowly apply the force till the board is bent for 5 ± 1 sec. Measure the Δ R/R(%) at this position.	Type RC0603 Bent Distance (d) 5mm Position before band 1.6 Testing printed circuit board Fig. II Principle of the bending test	$\pm (1.0\% + 0.05\Omega)$ for 1% tol. $\pm (1.0\% + 0.05\Omega)$ for 5% tol. No visible damage			

0603

