

SL2309NZ

Low Jitter and Skew DC to 140 MHz Clock Buffer

Key Features

- DC to 140 MHz operating frequency range
- Low output clock skew: 50ps-typ
- · Low part-to-part output skew: 90 ps-typ
- · Low output propogation delay: 3.5ns-typ
- 3.3V +/-10% operation supply voltage
- Low power dissipation:
 - 9 mA-typ at 33MHz
 - 11 mA-typ at 66MHz
 - 14 mA-typ at 133MHz
- One input to nine (9) output fanout buffer drivers
- · Available in 16-pin SOIC package
- Available in Commercial and Industrial grades
- Available in Lead (Pb) free package
- •

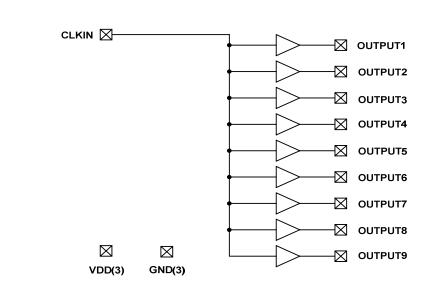
Applications

- General Purpose PCI/PCI-X Clock Buffer
- Printers, MFPs and Digital Copiers
- PCs and Work Stations
- · Routers, Switchers and Servers
- · Datacom and Telecom
- High-Speed Digital Embeded Systems

Description

The SL2309NZ is a low skew, jitter and power fanout buffer designed to produce up to nine (9) clock outputs from one (1) reference input clock, for high speed clock distribution, including PCI/PCI-X applications.

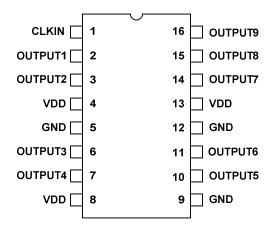
The SL2309NZ products operate from DC to 140MHz.


Refer to SL23EP09NZ products for DC to 220MHz-max frequency range, 2.5V power supply operation, improved skew, jitter and higher drive options.

Also refer to SL2304NZ or SL23EP04NZ products for 1:4 clock fanout buffers from 2.5V to 3.3V power supply and DC to 220MHZ frequency range.

Benefits

- Up to nine (9) distribution of input clock
- · Low propogation delay
- Low output-to-output skew
- Low output clock jtter
- Low power dissipation


Block Diagram

Rev 2.4, May 16, 2008 Page 1 of 8

Pin Configuration

16-Pin SOIC

Pin Description

Pin Number	Pin Name	Pin Type	Pin Description
1	CLKIN	Input	External Reference Clock Input
2	OUTPUT1	Output	Buffered Clock Output-1
3	OUTPUT2	Output	Buffered Clock Output-2
4	VDD	Power	3.3V +/-10% Power Supply
5	GND	Power	Power Ground
6	OUTPUT3	Output	Buffered Clock Output-3
7	OUTPUT4	Output	Buffered Clock Output-4
8	VDD	Power	3.3V +/-10% Power Supply
9	GND	Power	Power Ground
10	OUTPUT5	Output	Buffered Clock Output-5
11	OUTPUT6	Output	Buffered Clock Output-6
12	GND	Power	Power Ground
13	VDD	Power	3.3V +/-10% Power Supply
14	OUTPUT7	Output	Buffered Clock Output-7
15	OUTPUT8	Output	Buffered Clock Output-8
16	OUTPUT9	Output	Buffered Clock Output-9

Rev 2.4, May 16, 2008 Page 2 of 8

General Description

The SL2309NZ is a low skew, jitter and power fanout buffer designed to produce up to nine (9) clock outputs from one (1) reference input clock, for high speed clock distribution, including PCI/PCI-X applications.

Input and output Frequency Range

The input and output frequency is the same (1x) for SL2309NZ and the product operates from DC to 140MHz clock range with 15pF and 100MHz with 30pF output loads.

High Drive Capability

The SL2309NZ is designed to meet high drive requirements for up to 30pF load condition per electrical specifications.

If higher drive levels are required refer to SL23EP09NZ fanout buffer product.

Output Clock Skew

All outputs should drive the similar load to achieve outputto-output skew specifications as given in the switching electrical tables.

Power Supply Range (VDD)

The SL2309NZ is designed to operate 3.3V+/-10% (3.63V-max to 2.97V-min) VDD power supply range. An internal on-chip voltage regulator is used to provide to constant power supply of 1.8V, leading to a consistent and stable electrical performance in terms of skew and jitter. The SL2309NZ I/O is powered by using VDD=3.3V+/-10%.

Refer to SL23EP09NZ products for DC to 220MHz-max frequency range, 2.5V power supply operation, improved skew, jitter and higher drive options.

Contact SLI for 1.8V power supply Buffers and ZDB products.

Absolute Maximum Ratings (C-Grade and I-Grade)

Description	Condition	Min	Max	Unit
Supply voltage, VDD		-0.5	4.2	V
All Inputs and Outputs		-0.5	VDD+0.5	٧
Ambient Operating Temperature	In operation, C-Grade	0	70	°C
Ambient Operating Temperature	In operation, I-Grade	-40	85	°C
Storage Temperature	No power is applied	-65	150	°C
Junction Temperature	In operation, power is applied	_	125	°C
Soldering Temperature		-	260	°C
ESD Rating (Human Body Model)	JEDECC22-A114D	-4,000	4,000	V
ESD Rating (Charge Device Model)	JEDECC22-C101C	-1,500	1,500	V
ESD Rating (Machine Model)	JEDECC22-A115D	-200	200	V

Rev 2.4, May 16, 2008 Page 3 of 8

Operating Conditions (C-Grade and I-Grade)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF

Description	Symbol	Condition	Min	Тур	Max	Unit
Operating Voltage	VDD	VDD+/-10%	2.97	3.3	3.63	V
Operating Temperature	TA1	Ambient Temperature C-Grade	0	_	70	°C
Operating reinperature	TA2	Ambient Temperature I-Grade	-40	_	85	°C
Input Capacitance	VINC	Pin 1	_	3	6	pF
Load Canacitanas	CL1	All outputs ≤100MHz	_	-	30	pF
Load Capacitance	CL2	All outputs ≤140MHz	_	_	15	pF
Operating Frequency	CLKIN	Buffer Clock Range	DC	_	140	MHz

DC Electrical Characteristics (C-Grade)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range 0 to +70°C

Description	Symbol	Condition	Min	Тур	Max	Unit
Input LOW Voltage	VINL	CLKIN	_	_	0.8	V
Input HIGH Voltage	VINH	CLKIN	2.0	_	VDD+0.3	V
Input LOW Current	IINL	0 < VIN < 0.8V			10	μA
Input HIGH Current	IINH	2.4V < VIN < VDD			15	μA
Output Low Voltage	VOL	IoL=12mA			0.4	V
Output High Voltage	VOH	IOH=-12mA	2.4	_	_	V
Power Supply Current	IDD1	CLKIN=33.3MHz, CL=0	_	9	13	mA
Power Supply Current	IDD2	CLKIN=66.6MHz, CL=0	- 11		16	mA
Power Supply Current	IDD3	CLKIN=133.3MHz, CL=0	_	14	20	mA

Switching Electrical Characteristics (C-Grade)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range 0 to +70°C

		·		•		
Description	Symbol	Condition	Min	Тур	Max	Unit
	FOUT1	CL=15pf	0	-	140	MHz
Output Frequency Range	FOUT2	CL=30pf	0	-	100	MHz
Input Duty Cycle	DC1	Measured at VDD/2	20	50	80	%
Output Duty Cycle	DC2	CL=15pF, Fout=140 MHz Measured at VDD/2	45	50	55	%
Output Duty Cycle	DC3	CL=30pF, Fout=100 MHz Measured at VDD/2 40 50		50	60	%
Output Rise/Fall Time	tr/f-1	Measured at 0.8V to 2.0V CL=15pF	_	_	2.0	ns

Rev 2.4, May 16, 2008 Page 4 of 8

Switching Electrical Characteristics (C-Grade – Cont.)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range 0 to +70°C

Output Rise/Fall Time	tr/f-2	Measured at 0.8V to 2.0V CL=30pF	-	-	2.4	ns
Output Skew	SKW1	Measured at VDD/2 and Outputs are equally loaded	-	50	100	ps
Part to Part Skew	SKW2	Measured at VDD/2 and Outputs are equally loaded	-	100	200	ps
Propagation Delay Time	PDT	Measured at VDD/2 from CLKIN to Output Clock rising edge and Outputs are equally loaded	2.5	3.5	4.5	ns
Cycle-to-Cycle Jitter	CCJ1	CLKIN=66MHz and CL=0 (No Load)	_	75	150	ps
Cycle-to-Cycle Jitter	CCJ2	CLKIN=133MHz and CL=0 (No Load)	_	50	100	ps

DC Electrical Characteristics (I-Grade)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -40 to +85°C

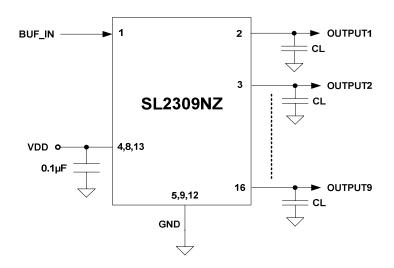
Description	Symbol	Symbol Condition		Тур	Max	Unit
Input LOW Voltage	VINL	BUF_IN	_	_	0.8	V
Input HIGH Voltage	VINH	BUF_IN	2.0	_	VDD+0.3	V
Input LOW Current	IINL	0 < VIN < 0.8V	-	-	10	μΑ
Input HIGH Current	IINH	2.4V < VIN < VDD	-	_	15	μΑ
Output Low Voltage	VOL	IoL=12mA	_	_	0.4	V
Output High Voltage	VOH	IOH=-12mA	2.4	-	-	V
Power Supply Current	IDD1	CLKIN=33.3MHz, CL=0	-	10	15	mA
Power Supply Current	IDD2	CLKIN=66.6MHz, CL=0	-	12	18	mA
Power Supply Current	IDD3	CLKIN=133.3MHz, CL=0	_	16	22	mA

Switching Electrical Characteristics (I-Grade)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -40 to +85°C

Description	Symbol	nbol Condition		Тур	Max	Unit
0.1.15	FOUT1	CL=15pf	0	_	140	MHz
Output Frequency Range	FOUT2	CL=30pf	0	_	100	MHz
Input Duty Cycle	DC1	Measured at VDD/2 20		50	80	%
Output Duty Cycle	DC2	CL=15pF, Fout=140 MHz Measured at VDD/2	45	50	55	%
Output Duty Cycle	DC3	CL=30pF, Fout=100 MHz Measured at VDD/2	40	50	60	%

Rev 2.4, May 16, 2008 Page 5 of 8


Switching Electrical Characteristics (I-Grade – Cont.)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -40 to +85°C

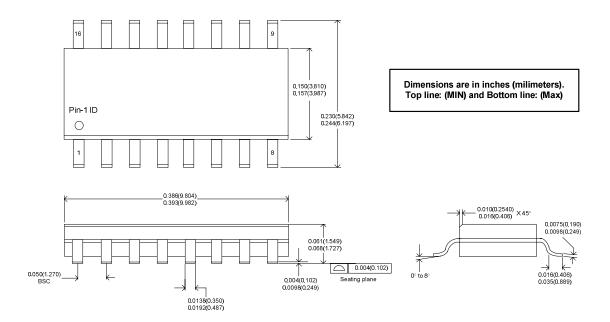
Output Rise/Fall Time	tr/f-1	Measured at 0.8V to 2.0V CL=15pF	_	_	2.2	ns
Output Rise/Fall Time	tr/f-2	Measured at 0.8V to 2.0V CL=30pF	_	_	2.6	ns
Output Skew	SKW1	Measured at VDD/2 and Outputs are equally loaded	_	60	120	ps
Part to Part Skew	SKW2	Measured at VDD/2 and Outputs are equally loaded	_	120	240	ps
Propagation Delay Time	PDT	Measured at VDD/2 from CLKIN to Output Clock rising edge and Outputs are equally loaded	2.0	3.5	4.8	ns
Cycle-to-Cycle Jitter	CCJ1	CLKIN=66MHz and CL=0 (No Load)	-	80	160	ps
Cycle-to-Cycle Jitter	CCJ2	CLKIN=133MHz and CL=0 (No Load)	-	60	120	ps

External Components & Design Considerations

Typical Application Schematic

Comments and Recommendations

Decoupling Capacitor: A decoupling capacitor of $0.1\mu F$ must be used between all VDD and VSS pins. Place the capacitor on the component side of the PCB as close to the VDD pin as possible. The PCB trace to the VDD pin and to the GND via should be kept as short as possible. Do not use vias between the decoupling capacitor and the VDD pin.


Series Termination Resistor: A series termination resistor is recommended if the distance between the output clocks and the load is over 1 $\frac{1}{2}$ inch. Place the series termination resistors as close to the clock outputs as possible.

Rev 2.4, May 16, 2008 Page 6 of 8

Package Outline and Package Dimensions

16-Lead SOIC (150-Mil)

Thermal Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
	θЈΑ	Still air	-	78	-	°C/W
Thermal Resistance Junction to Ambient	θЈΑ	1m/s air flow	-	74	-	°C/W
	θЈΑ	3m/s air flow	-	70	-	°C/W
Thermal Resistance Junction to Case	θ JC	Independent of air flow	-	44	ı	°C/W

Rev 2.4, May 16, 2008 Page 7 of 8

Ordering Information [1]

Ordering Number	Marking	Shipping Package	Package	Temperature
SL2309NZSC-1H	SL2309NZSC-1H	Tube	16-pin SOIC	0 to 70°C
SL2309NZSC-1HT	SL2309NZSC-1H	Tape and Reel	16-pin SOIC	0 to 70°C
SL2309NZSI-1H	SL2309NZSI-1H	Tube	16-pin SOIC	-40 to 85°C
SL2309NZSI-1HT	SL2309NZSI-1H	Tape and Reel	16-pin SOIC	-40 to 85°C

Note:

1. The SL2309NZ products are RoHS compliant.

While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in normal commercial applications and is not warranted not is it intended for use in life support, critical medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional processing by Spectra Linear Inc., and an expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any circuitry or specification without notice.

Rev 2.4, May 16, 2008 Page 8 of 8