Solder-in Style EMI Filter

AVX solder-in style C and L section filters, utilize patented conductive polymer technology to provide effective attenuation in the RF to microwave frequency spectrum from 10MHz to 50GHz. Designed in accordance with MIL-PRF-28861, they perform well in high impedance circuits where large capacitance values are not practical. They are ideal for filtering signal/data lines of high impedance source and load systems. These filters are designed to be soldered into a package, bracket or bulkhead (and maintain hermeticity).

CHARACTERISTICS

- Miniature and Microminiature versions for Aerospace applications
- High temperature construction, withstands 300°C installation temperatures
- Rugged monolithic discoidal capacitor construction
- Custom lead lengths and capacitance values available on request
- Glass hermetic seal on one end with epoxy on the opposite end
- High purity gold plating provides excellent solderability or compatibility with thermal and ultrasonic wire bonding

Н

H = Polyimide Y = Solder

Z = Braze

- Rated DC current up to 10A
- NASA SSQ 21215-21218

ZS	2	Ç	2	B	<u>103</u>
$\begin{array}{l} \textbf{Style} \\ ZZ = (.118 \text{ Dia.}) \\ M28861/12 \\ ZYS* = (.105 \text{ Dia.}) \\ ZXS* = (.075 \text{ Dia.}) \\ ZZS* = (.120 \text{ Dia.}) \\ ZZS* = (.128 \text{ Dia.}) \\ M28861/12 \\ ZR* = (.128 \text{ Dia.}) \\ M28861/12 \\ YS* = (.165 \text{ Dia.}) \\ M28861/15 \\ YR* = (.165 \text{ Dia.}) \\ M28861/15 \\ XS* = (.250 \text{ Dia.}) \\ M28861/14 \\ XR* = (.250 \text{ Dia.}) \\ M28861/14 \\ WS* = (.400 \text{ Dia.}) \\ M28861/13 \\ WR* = (.400 \text{ Dia.}) \\ M28861/13 \\ \end{array}$	Circuit 1 = C Section (Feed Thru) 2 = L-Section 8 = Grounded Feed Thru *Glass Seal Ori S = Standarc R = Reverse N = No Glass (Epoxy b	Voltage A = 100 VDC B = 200 VDC C = 50 VDC E = 400 VDC/230 VAC OR 400 VDC K = 250 VDC L = 300 VDC OR 200 VDC/115 VAC M = 350 VDC N = 70 VDC Y = 300 VDC Z = 400 VDC X = 500 VDC A = 500 VDC C = 400 VDC X = 500 VDC	 Options 1 = Copper (std. for non-hermetic) 2 = Nickel Iron (std.) 3 = Special 4 = Aluminum compatible with seating flange (std. lead) 5 = Aluminum compatible with seating flange (special lead) D = Aluminum compatible with centering flange (std. lead) E = Aluminum compatible with centering flange (special lead) F = Aluminum compatible special lead) F = Aluminum compatible special design Y = Solder 	MIL-28861 Screening B = Class B S = Class S	3 Digit Capacitor Code (în pF)
	M = Mid Flane	qe			

HOW TO O	RDER	
ZS	2	С

C	2 = Nickel Iron (std.)	S = Class S	
DC/230 VAC	3 = Special		
0 VDC	4 = Aluminum compatible		
C	with seating flange		
DC OR	(std. lead)		
DC/115 VAC	5 = Aluminum compatible		
DC	with seating flange		
C	(special lead)		
DC	D = Aluminum compatible		
	with centering flange		
DC	(std. lead)		
DC	E = Aluminum compatible		
	with centering flange		
	(special lead)		

