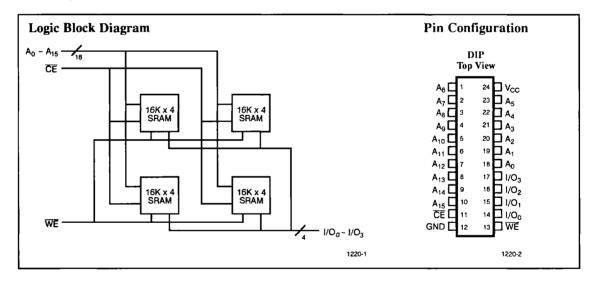
64K x 4 SRAM Module

Features

- Very high speed 256K SRAM module
 Access time of 10 nsec.
- 300-mil-wide hermetic DIP package
- Low active power
 - 1.8W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- On-chip decode for speed and density
- JEDEC pinout—compatible with 7C194 monolithic SRAMs
- Small PCB footprint
 - 0.36 sq. in.

Functional Description


The CYM1220 is an extremely high performance 256-kilobit static RAM module organized as 65,536 words by 4 bits. This module is constructed using four 16K x 4 static RAMs in LCC packages mounted on a 300-mil-wide ceramic substrate. Extremely high speed and density are achieved by using BiCMOS SRAMs containing internal address decoding logic.

Writing to the module is accomplished when the chip enable (\overline{CE}) and write enable (\overline{WE}) inputs are both LOW. Data on the four input pins $(I/O_0$ through $I/O_3)$

of the device is written into the memory location specified on the address pins (A₀ through A₁₅).

Reading the device is accomplished by taking the chip enable (\overline{CE}) LOW, while write enable (\overline{WE}) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins $(A_0$ through $A_{15})$ will appear on the four output pins $(I/O_0$ through $I/O_3)$.

The data output pins remain in a highimpedance state unless the module is selected and write enable (WE) is HIGH.

Selection Guide

		1220HD-10	1220HD-12	1220HD-15	1220HD-20
Maximum Access Time (ns)		10	12	15	20
Maximum Operating	Commercial	325	325	325	
Current (mA)	Military		375	375	375
Maximum Standby	Commercial	200	200	200	
Current (mA)	Military		250	250	250

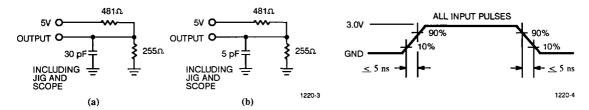
Maximum Ratings

(Above which the useful life may be impaired)

(13000 when the assist the may be imparted)
Storage Temperature65°C to +150°C
Ambient Temperature with
Power Applied55°C to +125°C
Supply Voltage to Ground Potential $-0.5V$ to $+7.0V$
DC Voltage Applied to Outputs
in High Z State0.5V to +7.0V
DC Input Voltage0.5V to +7.0V

Operating Range

Range	Ambient Temperature	v_{cc}
Commercial	0°C to +70°C	5V ± 10%
Military	-55°C to +125°C	5V ± 10%


Parameters Description		Took Conditions	CYM1220HD			
		lest Conditions	Test Conditions			Units
VOH	Output HIGH Voltage	$V_{CC} = Min.$, $I_{OH} = -4.0 \text{ mA}$		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.4	V
V _{IH}	Input HIGH Voltage			2.2	Vcc	v
V _{IL}	Input LOW Voltage[1]			-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		-20	+ 20	μА
loz	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Output Disabled		-20	+ 20	μА
I _{CC}	V _{CC} Operating	$\underline{V_{CC}} = Max., I_{OUT} = 0 mA,$	Commercial		325	^
ICC	Supply Current	$\overline{CE} \leq V_{IL}$	Military	_	375	mA
,	Automatic CE	$V_{CC} = Max., \overline{CE} \ge V_{H},$	Commercial		200	
I_{SB1}	Power-Down Current	Min. Duty Cycle = 100%	Military		250	mA.
Ione	Automatic CE	$V_{CC} = Max., \overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or}$	Commercial		200	mA
I _{SB2}	Power-Down Current	$V_{IN} \leq 0.2V$	Military		250	"

Capacitance[2]

Parameters	Description	Test Conditions	Max.	Units
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	25	pF
Cour	Output Capacitance	$V_{CC} = 5.0V$	30	pF

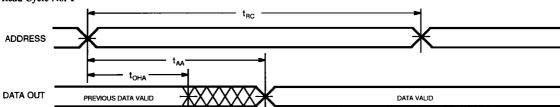
Notes

AC Test Loads and Waveforms

^{1.} $V_{IL(MIN)} = -3.0V$ for pulse widths less than 20 ns.

^{2.} Tested on a sample basis.

Switching Characteristics Over the Operating Range [3]

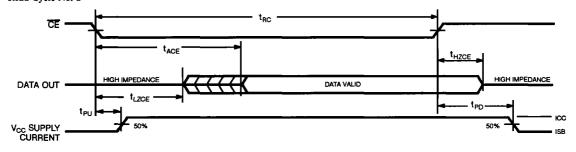

Parameters	Description	1220HD-10		1220HD-12		1220HD-15		1220HD-20		Units
rarameters	Description	Min.	Max.	Min.	Max.	Min.	Max.	MIn.	Max.	Oillis
t _{RC}	Read Cycle Time	10		12		15		20		ns
t _{AA}	Address to Data Valid		10		12		15		20	ns
^t OHA	Data Hold from Address Change	2		3		3		3		ns
tACE	CE LOW to Data Valid		10		12		15		20	ns
tLZCE	CE LOW to Low Z	2		3		3		3		ns
tHZCE	CE HIGH to High Z ^[4]		6		8		8		8	ns
tpU	CE LOW to Power Up	0		0		0		0		ns
tPD	CE HIGH to Power Down		10		12		15		20	ns
twc	Write Cycle Time	10		12		15		20		ns
tSCE	CE LOW to Write End	8		10		12		15		ns
t _{AW}	Address Set-up to Write End	8		10		12		15		ns
t _{HA}	Address Hold from Write End	1		1		1		1		ns
tsA	Address Set-up from Write Start	0		0		0		0		ns
tPWE	WE Pulse Width	8	1	10		12		15		ns
tSD	Data Set-Up to Write End	8	2	10		10	·	10		ns
tHD	Data Hold from Write End	1		1		1		1		ns
tLZWE	WE HIGH to Low Z	3		5		5		5		ns
tHZWE	WE LOW to High Z [4]	0	5	0	7	0	7	0	10	ns

Notes:

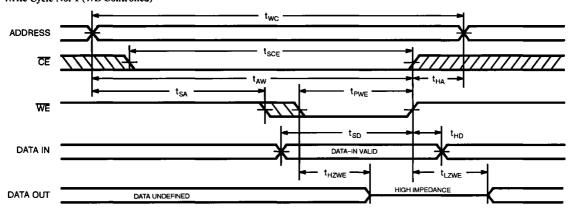
- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
- 5. The internal write time of the memory is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. Both signals must be LOW to initiate a write and
- either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 6. WE is HIGH for read cycle.
- 7. Device is continuously selected, $\overline{\text{CE}} = V_{\text{IL}}$.
- 8. Address valid prior to or coincident with $\overline{\text{CE}}$ transition low.
- If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms

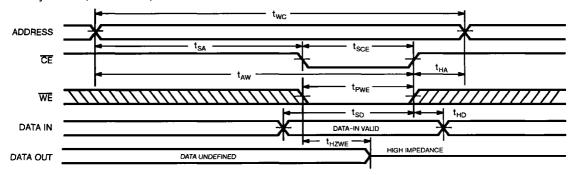
Read Cycle No. 1[6, 7]



1220-5


Switching Waveforms (continued)

Read Cycle No. 2 [6,8]


1220-8

Write Cycle No. 1 (WE Controlled) [5]

1220-7

Write Cycle No. 2 (CE Controlled)[5,9]

1220-8

Truth Table

CE	WE	Inputs/Outputs	Mode
Н	X	High Z	Deselect/Power-Down
L	Н	Data Out	Read Word
L	L	Data In	Write Word

Ordering Information

Speed	Ordering Code	Package Type	Operating Range
10	CYM1220HD-10C	HD08	Commercial
12	CYM1220HD-12C	HD08	Commercial
	CYM1220HD-12MB		Military
15	CYM1220HD-15C	HD08	Commercial
	CYM1220HD-15MB		Military
20	CYM1220HD-20MB	HD08	Military

Document #: 38-00025