

LSJ202 N-CHANNEL JFET

Linear Systems replaces discontinued Siliconix J202

The LSJ202 is a high gain N-Channel JFET

This n-channel JFET is optimised for high gain. The part is particularly suitable for use in low power or high impedance amplifiers. The SOT-23 package is well suited for cost sensitive applications and mass production.

(See Packaging Information).

LSJ202 Benefits:

- High Input Impedance
- Low Cutoff Voltage
- Low Noise

LSJ202 Applications:

- Battery powered amplifiers
- Audio Pre-Amplifiers
- Infra-Red Detector Amplifiers

FEATURES						
DIRECT REPLACEMENT FOR SILICONIX J202						
LOW CUT OFF VOLTAGE V _{GS(off)} ≤ 2						
HIGH GAIN	$A_{V} = 80 \text{ V/V}$					
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)						
Maximum Temperatures						
Storage Temperature	-65°C to +150°C					
Operating Junction Temperature	-55°C to +135°C					
Maximum Power Dissipation						
Continuous Power Dissipation	350mW					
MAXIMUM CURRENT						
Forward Gate Current (Note 1)	50mA					
MAXIMUM VOLTAGES						
Gate to Drain Voltage	$V_{GDS} = -40V$					
Gate to Source Voltage	V _{GSS} = -40V					

LSJ202 ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

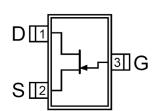
SYMBOL	CHARACTERISTIC	MIN	TYP.	MAX	UNITS	CONDITIONS
BV _{GSS}	Gate to Source Breakdown Voltage	-40	-			$I_G = 1\mu A$, $V_{DS} = 0V$
V _{GS(off)}	Gate to Source Cutoff Voltage	-0.8	1	-4	V	$V_{DS} = 15V, t_D = 10$ nA
I _{DSS}	Drain to Source Saturation Current (Note 2)	0.9	-1	4.5	mA	$V_{DS} = 15V, V_{GS} = 0V$
I _{GSS}	Gate Reverse Current	-2	1	-1 <mark>0</mark> 0		$V_{GS} = -20V, V_{DS} = 0V$
l _G	Gate Operating Current		-2		PΑ	$V_{DG} = 10V, I_D = 0.1 \text{mA}$
I _{D(off)}	Drain Cutoff Current		2			$V_{DS} = 15V, V_{GS} = -5V$
g fs	Forward Transconductance	1	-		mS	$V_{DS} = 15V$, $V_{GS} = 0V$, $f = 1kHz$
C _{iss}	Input Capacitance		4.5		pF	$V_{DS} = 15V, V_{GS} = 0V, f = 1MHz$
C _{rss}	Reverse Transfer Capacitance		1.3			
e_n	Equivalent Noise Voltage		6		nV/√Hz	$V_{DS} = 10V, I_{D} = 1mA, f = 1kHz$

Note 1 - Absolute maximum ratings are limiting values above which LSJ202 serviceability may be impaired.

Note 2 – Pulse test: PW \leq 300 μ s, Duty Cycle \leq 3%

Micross Components Europe

Tel: +44 1603 788967


Email: chipcomponents@micross.com
Web: http://www.micross.com/distribution

Available Packages:

LSJ202 in SOT-23 LSJ202 in bare die.

Please contact Micross for full package and die dimensions

SOT-23 (Top View)

Information furnished by Linear Integrated Systems and Micross Components is believed to be accurate and reliable. However, no responsibility is assumed for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Linear Integrated Systems.